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ABSTRACT

In this technical report, we present our submitted system for
DCASE2022 Task5: few-shot bio-acoustic event detection. Our
system employs the transductive learning strategy, data
augmentation and an adapted version of central difference
convolution (CDC). Evaluated on the validation set, our method
achieves the overall F-measure score of 41.1%.

Index Terms— Few-shot learning, sound event detection,
transductive learning.

1. INTRODUCTION

Bio-acoustic event detection is a task to detect whether a
certain animal vocalization happens in a given audio clip and
when. For this particular task, data scarcity is a very tricky issue.
On the one hand, the vocalizations of some species are difficult
to collect. On the other hand, the collected data can only be
annotated by people with expert knowledge. Therefore, the
popular methods based on standard supervised learning that
achieves good results on other types of sound event detection
may not perform well on this task. In contrast, few-shot learning
describes tasks in which an algorithm must make predictions
given only a few instances of each class. This paradigm is a
perfect fit for the issue mentioned above. It is safe to say that few
-shot bio-acoustic event detection is worth exploring as it
satisfies the need of users.

In this challenge, the few-shot task is defined as 5-shot
problem. Only five annotated calls are provided for the
recordings in the official evaluation set. Each recording has a
single class of interest which the participants will then need to
detect through the recording utilizing only the annotated
instances.

2. FEW-SHOT SETTING

Let x and y denote an instance and its ground-truth label
respectively.  The  training and test datasets are

Dy ={(zs,y) } =, and D,={(z;,y;)} ", respectively, where
y,€C, for some set of classes C; . In the few-shot setting,
training and test datasets are referred to as support and query
datasets, respectively. The number of ways (classes) is |Ci| . The
number of shots (instances) is marked as N, and is small in each

support set. The goal is to learn a function F to exploit the
training set Ds to predict the label of a test instance in D, .

3. PROPOSED METHOD

In this section, we introduce the methods used in our system,
including data augmentation, transductive learning and our
proposed adapted central difference convolution.

3.1. Data augmentation

Data augmentation is a commonly used strategy in both
computer vision and audio processing tasks to enhance the
robustness of target model. The SpecAugment [1] is a simple
data augmentation method that is applied directly on the
spectrogram. Specifically, the operations of this method include
time warping, frequency masking, and time masking.

3.1.1. Time Warping

Given a log mel spectrogram with ¢ time steps, a random
point along the time axis passing through the center of the
spectrogram within the time steps (W, — W) is warped either to
the left or right by a distance @ chosen from a uniform
distribution from 0 to the time warp parameter W .

3.1.2. Frequency masking

Masking is applied on f consecutive mel frequency channels
[fo,fo+ f) where fis first chosen from a uniform distribution
from 0 to the frequency mask parameter F and f, is chosen

from [0, v— f). vis the number of mel frequency channels.

3.1.3. Time masking
Masking is applied on ¢ consecutive steps [t +t), where ¢ is

first chosen from a uniform distribution from 0 to the time mask
parameter T and f is chosen from [0, 7-f). This operation is
applied during the training phase, which is introduced in the
following subsection.

3.2. Transductive learning

For a given few-shot task, we have a support set S ={Xs,Ys}
and a query set Q={X,Y,} , where Y, denotes the labels to be

predicted. Let fo:X — Z € R” denote the feature extractor and Z
represents the set of extracted features. In addition, a base dataset
Dyase ={ Xase, Youse) is provided to pre-train the feature extractor.

The idea of transductive learning is to leverage the unlabeled
instances in the query set to facilitate the network update on the
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labeled instances in the support set. Our method is inspired by the
work in [2] in which the mutual information (MI) between the
query instances and their predicted labels during inference in
maximized. This method is referred to as Transductive
Information Maximization (TIM). Specifically, we first train a
backbone network f, on the training set provided by the

organizer following the standard supervised learning paradigm.
We compute the cross-entropy loss between the predicted label
and the ground-truth label and update the model parameters
through the algorithm of back-propagation. Next, the backbone
model is frozen and is used as the feature extractor, and we
construct a classifier parameterized by W = [wy,...,wx]€ R**
and initialize its parameters with the prototypes [3] of each class
in the support set. The posterior distribution over labels given
features is given by pu =P (Y =k|X =2;;W,60) and similarly
the marginal  distribution over query labels is
pr.=P(Y =k;W,0). ps and p, are calculated by

exp(wy, - 2;) _
P, = K—k = z P - (1)
SE e, z) Qi

Finally, we finetune the classifier using the loss function
defined by
L, = Jop -CE =1 (Xg:Yy) )

where Aoz is a hyper-parameter, I(X 0:Yg) is the mutual
information. The definition of CE and I(X);Y,)) are given by

3)
I(Xp:Yy) = Zpklogpﬁ‘ ZZp,klogm
zer 1
and
CE :_\S\ ZZJ i 10g(1,) - 4)

i€S i=1
The overall evaluation process is illustrated in Fig. 1. In our
experiment, we set the hyper-parameter Acg as 0.1.
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Fig. 1 The overall process of transductive learning.
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3.3. Central difference convolution

Central difference convolution (CDC) is proposed in [4] for
robust feature representation. For the sake of brevity, in this
subsection the convolutions are described in 2D.

3.3.1. Vanilla Convolution
We denote the basic 2D spatial convolution in convolutional
neural network as vanilla convolution. The operation includes
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two main steps: sampling local receptive field region R over the
input feature map x, and aggregation of sampled values via
weighted summation. Hence, the output feature map y can be
formulated as

y(p)= Y. w(p,) z(py+p,) )

ppeR
where Po denotes current location on both input and output

feature maps while p,, enumerates the locations in R.

3.3.2. Central Difference Convolution

The CDC is inspired by the famous local binary pattern [4, 5],
which describes local relations in binary central difference way.
By combining central difference with vanilla convolution, the
CDC is defined by

y(p) =a- Y w(p,)-(@(p,+p,)—z(p,))

ppeR

+1-a)- Y w(p,)-z(py +p,) (©6)
ppeR

where hyper-parameter « €[0,1] balances the contribution

between intensity-level and gradient-level information. In our
experiment, o is set to 0.7.

3.3.3. Implementation of CDC

In order to efficiently implement central difference
convolution in deep learning framework. Eq. 6 can be
decomposed into

y(po) = 2, w(p,)-w(py+p,)+a-(—x(p)- Y, wp,))  (7)

PneR ppel

3.3.4. Adapted Central Difference Convolution (ACDC)

As image features are quite different from the audio
counterpart, we adopt the CDC mentioned above for audio tasks.
The adopted version is given by
y(po) = 2, w(p,)-w(py+p,)—a-(—z(py)- Y, w(p,)) &)

PneR ppeR
In our experiment, we directly replace all the vanilla
convolution kernel with ACDC without making any other

changes to the network architecture.
4. EXPERIMENT

4.1. Experiment setups

The dataset is from DCASE2022 task5, including
development and evaluation sets. The development set is pre-
split into training and validation sets. For all the experiments, we
employ the even-based F-measure, which is the same as the
official baseline [6]. Our system directly uses the feature
extraction module provided by the official baseline [6] with the
same parameters except for setting a fixed segment length and
hop length of 17 frames and 4 frames respectively. The network
in [3] is used as the backbone of our network, which consists of
4 convolutional layers. The difference between our network and
the network in [3] is that we add a dense layer after the last
convolution layer to compute the classification results during
training.

4.2. Ablation study
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In his part, we study the influence of each component of our
methods, and the results are presented in Table 1.

Table 1. Influence of each component of our method.

Method F-score (%)
TIM 43.646
TIM+SPEC 43.974
TIM+ACDC 52.77
TIM+SPEC+ACDC 54.59

4.3. Experiment result

Table 2 shows the experiment results on the validation set. Our
method achieves F-score of 41.09%, precision of 51.08% and
recall of 34.38% on the development set.

Table 2. Experiment results on the validation set.

Method Precision (%)  Recall (%) F-score (%)
Baseline [6] 36.34 24.96 29.59
Ours 60.88 49.48 54.59

5. CONCLUSIONS

In this technical report, we develop a few-shot bio-acoustic
event detection system based on transductive learning and
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adapted central difference convolution. In addition, we also
employ some data augmentation method to improve the system
performance. However, much work still remains to be done to
how different parts of the system influence the performance.
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