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ABSTRACT 

In this report, we outline our ensemble of models solution for the DCASE 2022 challenge’s Task 2 (Unsupervised 

Anomalous Sound Detection for Machine Condition Monitoring Applying Domain Generalization Techniques). The 

basic approach follows our DCASE2021 Task 2 system [1]. In 2022 we diversify our CNN backbone architecture and 

input size. The final submissions are the ensemble of 2 models for each machine type. The model is trained on a 

mixture of source and target domains, achieving the same performance on both source and target domains.  

Index Terms— DCASE2022, anomalous sounds detection, metric learning, Adacos 

1. INTRODUCTION 

DCASE2022 Task2 has three main challenges:  

1. Only normal sound clips are provided as training 

data (i.e., unsupervised learning scenario). In 

real-world factories, anomalies rarely occur and 

are highly diverse. Therefore, exhaustive 

patterns of anomalous sounds are impossible to 

create or collect and unknown anomalous sounds 

that were not observed in the given training data 

must be detected. This condition is the same as 

in DCASE 2020 Task 2 and DCASE 2021 Task 

2. 

2. Factors other than anomalies change the acoustic 

characteristics between training and test data (i.e., 

domain shift). In real-world cases, operational 

conditions of machines or environmental noise 

often differ between the training and testing 

phases. For example, the operation speed of a 

conveyor can change due to seasonal demand, or 

environmental noise can fluctuate depending on 

the states of surrounding machines. This 

condition is the same as in DCASE 2021 Task 2. 

3. In test data, samples unaffected by domain shifts 

(source domain data) and those affected by 

domain shifts (target domain data) are mixed, 

and the source/target domain of each sample is 

not specified. Therefore, the model must detect 

anomalies with the same threshold value 

regardless of the domain (i.e., domain 

generalization). 

For challenge 1, we train three section classification 

network for each machine type, which tries to identify 

each section under a certain machine type. Two model 

uses EfficientNet_B0 [2] as the backbone architecture, 

and another model uses Swim transformer [3] as the 

backbone architecture. In test phase, the last 

classification layer of the network is removed. Each 

input spectrogram is mapped into a 1280-dim or 1024-

dim embedding vector, which is used for measuring 

cosine similarity in angular space. For challenge 2 and 

challenge 3, the models trained on source domain data 

are further fine-tuned on the target domain data. We use 

serval finetuning strategies to improve performance. 
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1.1. DCASE 2021 Task2 Dataset 

The data used for this task consists of the 

normal/anomalous operating sounds of seven types of 

machines. Each recording is a single-channel 10-sec 

length audio clip that includes both the sounds of the 

target machine and environmental sounds. 

Table 1：Architecture of EfficientNet-B0 based network 

 

1.2. Audio preprocessing  

Follow [4], we load the audio clips with their raw 

sampling rate (16,000 Hz), and the spectrogram is 

adopted through a Short Time Fourier Transform 

(STFT). We use librosa package [5] to apply STFT and 

mel spectrogram, the length of the window (nFFT) is 

2046, the hop length is 512, so the height of the 

spectrogram is 1024 (1 + nFFT/2). Then spectrogram is 

split into 32 columns piece and each piece is normalized 

by subtracting the mean and dividing by the standard 

deviation. We use these 1024×32 shape data to train our 

EfficientNet_B0 network, and the 512×48 reshaped 

version is used to train Swim transformer, and the 

128x128 mel spectrogram is used to train another 

EfficientNet_B0, we ensemble all the models’ 

predictions scores finally. 

2.  SOLUTIONS 

2.1. Training Loss  

AdaCos loss [6] is employed to train our machine section 

classification network. AdaCos is cosine-based softmax 

loss. No hyperparameters are required, and the adaptive 

scale parameter is used to automatically strengthen 

training supervision during the training process. The 

cosine similarities between training samples and the 

corresponding class center vectors (fully connected 

vectors before softmax) can be dynamically scaled such 

that their predicted class probabilities satisfy the 

semantic meaning of these cosine similarities. We also 

tried ArcFace loss [7], but the score was not good enough 

in this challenge, we left it for future work. 

2.2. Models  

Two backbone architectures are incorporated: Swim 

Transformer based network and EfficientNet-B0.Another 

EfficientNet-B0 use softmax to do the classification. 

Figure 1 shows the architecture of our Swim Transformer 

based network. Table 1 shows the architecture of our 

EfficientNet-B0 based network. For each backbone 

architecture, we trained servel input shape version. 

Finally , we find (512,48) suitable for the Swim 

Transformer and (1024,32) suitable for EfficientNet-B0. 

Stage Operator Resolution #Channels #Layers 

i F HxW C L 

1 Conv3x3 224 × 224 32 1 

2 MBConv1，

k3x3 

112 × 112 16 1 

3 MBConv6, 

k3x3 

112 × 112 24 2 

4 MBConv6, 

k5x5 

56 × 56 40 2 

5 MBConv6, 

k3x3 

28 × 28 80 3 

6 MBConv6, 

k5x5 

14 × 14 112 3 

7 MBConv6, 

k5x5 

14 × 14 192 4 

8 MBConv6, 

k3x3 

7 × 7 320 1 

9 Conv1x1 & 

Pooling & FC 

7 × 7 1280 1 



 

Figure 1 ：(a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with Eq. 

(3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively. 

2.3 Training Details 

All models are trained from scratch without using any pre-

trained model or external data resources. We use Adam to 

optimize models. The learning rate is set to 0.0001. Train 

models on source domain data. Spectrograms are 

extracted from the 10-second audio and the 1024 ×32 or 

512× 48 pieces are cropped to feed to the network. Mel 

Spectrograms are extracted from the 10-second audio and 

the 128×128 pieces are cropped to feed to the network. We 

train each model for 150 epochs. And Table 2 shows 

hyper-parameters of our models. 

Table 2：Summarization of hyper-parameters 

2.4. Submissions  

In Table 3, we present harmonic mean of the partial AUC 

and arithmetic mean of the partial AUC for 2 baseline 

systems and our 3 submissions. The 3 submissions are 

implemented as follows:  

Submission1: For each machine type, we use 

efficientnet-B0 based model’s prediction results. 

Submission2: We use swim transformer based 

model’s prediction results. 

Submission3: We use efficientnet-B0 and softmax 

based model’s prediction results.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters for signal processing  

Sampling rate 16,000 Hz 

FFT length 2046 pts 

FFT hop length 512 pts 

Learning strategy  

learning rate 0.0001 

Other parameters  

Batch size 48 

K (for embedding’s similarity calculation) 10 



Table 3: Evaluation results: Harmonic mean of the partial AUC[%]/Arithmetic mean of the partial AUC[%] on Development Dataset 

Algorithm Toy Car Toy Train bearing fan gearbox slider valve 

Baseline(AE-

based) 

52.78/52.76 50.56/50.50 52.17/52.03 57.98/57.53 58.73/58.50 56.05/55.78 50.39/50.36 

Baseline(MobileN

etV2-based) 

52.54/52.39 51.58/51.56 57.66/57.35 57.61/57.10 56.54/56.18 56.62/54.77 65.44/62.70 

Submission1(Effi

cientNet-B0) 

51.42/51.26 50.44/50.41 53.82/53.44 51.68/51.60 57.54/57.14 70.43/66.56 61.47/59.06 

Submission2(Swi

mTransformer) 

53.54/53.41 52.07/52.05 63.98/63.62 50.33/50.31 55.19/54.27 57.08/56.89 53.59/53.29 

Submission3(Effi

cientNet-B0) 

55.18/56.89 52.93/54.65 65.14/66.34 59.82/61.90 61.97/64.53 66.58/68.45 66.02/79.66 

 

 

 

3.  CONCLUSIONS 

This technique report briefly presents our ensemble of 

AdaCos based systems for the task 2 of DCASE2022 

challenge. On the basis of our 2021 Task 2 approach, we 

diversify CNN backbone to detect anomalies with the 

same threshold value regardless of the domain.  
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