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ABSTRACT 

This report describes our systems submitted to the DCASE2022 

challenge task 3: Sound Event Localization and Detection (SELD) 

with directional interference. Locating and detecting sound events 

consists of two subtasks: detecting sound events and estimating 

the direction of arrival simultaneously. Therefore, it is often dif-

ficult to jointly optimize these two subtasks at the same time. 

We propose track-wise ensemble model which is combined 

with a multi-task-based auxiliary duplicating permutation invari-

ant training (ADPIT) model and multi-ACCDOA-based model. 

Specifically, we propose a novel method to ensemble CRNN 

multi-task models, an event independent network v2 (EINV2)-

based multi-task models and CRNN multi-ACCDOA models. 

Experimental results on the DCASE2022 dataset for sound 

event localization and directional interference detection show that 

the deep learning-based model trained on this new function signif-

icantly outperforms the DCASE challenge baseline. 

 

Index Terms— DCASE2022, Sound Event Localiza-

tion and Detection, Model ensemble 

1. INTRODUCTION 

The Sound Event Localization and Detection (SELD) is to detect 

sound events belonging to specific target classes, track their tem-

poral activity, and estimate their directions-of-arrival (DOA) or 

positions during it. The SELD system provides important opera-

tions for autonomous vehicles or robots with multi-channel audio 

input receivers. For example, self-driving cars can distinguish be-

tween car horns and pedestrian steps on the road, and indoor mo-

bile robots can estimate the domestic sounds such as vacuum 

cleaners, mechanical fans, and door sounds in a house situation. In 

particular, the serving robot has many customers in the restaurant 

and many sound events occur, so the solution to analyze multi-

channel audio data and estimate the corresponding source in a spe-

cific direction is reasonable. 

Neural network based SELD methods can be classified into 

class-wise output formats and track-wise formats [1-10]. The 

track-wise format allows the model to detect the same event class 

in multiple locations, whereas the track-wise format detects only 

one event class and its location on each track. On the other hand, 

the class-wise format still has problems detecting overlapping 

events in the same class because it only assigns one location to 

each event class. To overcome these problems, a multiple 

ACCDOA method using auxiliary duplicating permutation invar-

iant training (ADPIT) has been proposed [11]. 

In this study, we perform a model ensemble of multiple sys-

tems trained with different conditions and model architectures. A 

spatial cue-augmented log-spectrogram (SALSA)-lite-based sys-

tem and an event independent network v2 (EINV2)-based multi-

task system and multi-ACCDOA-based model are applied [8, 11, 

12]. Each system derives SED and DOA results by track and ap-

plying ADPIT. Using the track-wise ensemble method, the output 

of each single learned system is combined to make a final judg-

ment after learning. To increase the training data, we perform data 

augmentation such as SpecAugment [13], cutout, frequency shift 

and rotation of the signal [14]. Experiments on the development 

dataset showed that our system improved significantly over the 

baseline system. 

2. DATASETS 

The DCASE2022 Task3 provides STARS22 Development da-

taset and DCASE2022 SELD Synthetic dataset [15]. The datasets 

contains 13 target sound event classes. The STARS22 dataset was 

actually recorded and manually annotated by real sound scenes. 

Occurrences of up to 3 simultaneous events are quite usual and up 

to 5 overlapping events can sometimes happen. The DCASE2022 

SELD Synthetic dataset is generated through convolution of iso-

lated sound samples with real spatial room impulse responses 

(SRIRs) captured in various spaces of Tampere University. Sound 

samples for the target classes were sourced from the FSD50K [16]. 

Maximum polyphony of sound samples is 2 track with possible 

same-class events overlapping. 

In additional, we have generated more complex dataset. The 

synthetic method is basically equal with DCASE2022 SELD Syn-

thetic dataset. However, synthesized sound samples were joined 

from the AudioSet dataset [17]. The samples were manually se-

lected based on their labels having only one of the classes of inter-

est. The generated dataset consists of 1200 audio files is 1-minute 

long mixed with the sound events. A maximum polyphony is 5 

events without directional interference and does not overlap more 

than 3 for the same target classes. 
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Figure 1. Illustration of three different single SELD architectures.  

(a) CRNN multi-ACCDOA network, (b) CRNN multi-task network, (c)EINV2-based multi-task network 

3. PROPOSED APPROACH 

 

3.1 Multi-task ADPIT 

 

A PIT framework with a replication target is called ADPIT. Ap-

plying ADPIT allows the model to maintain performance in the 

absence of duplicates of the same class by duplicating the original 

target with secondary targets on different tracks instead of zero 

vectors to ensure that all tracks are trained with a single target and 

the same target [11]. 

We extended ADPIT to handle multi-task problems. By using 

Multi-task ADPIT, we can deal multi-track SED and DOA as sep-

arated task. 

 

3.2 Features 

 

In this study, two types of features are used for ensemble models. 

SALSA-Lite feature from MIC is used as the first set of features. 

Log-mel spectrograms and intensity vector (IV) in log-mel space 

from FOA are used as the second set of features. We extract fea-

tures for both MIC and FOA as input features. Log-mel spectro-

grams are first used for SED, while IV in log-mel space is used for 

DOA estimation in EINV2-based multi-task system. SALSA-Lite 

feature is composed of two major components: linear-frequency 

log-power spectrogram and frequency-normalized inter-channel 

phase difference. 

 

3.3 Network architecture 

 

In this study, to increase the diversity of the model ensemble, we 

consider variants of multi-task architecture and multi-ACCDOA 

based architecture. Those architectures are illustrated in Fig. 1 (a)–

(c) and described in Table 1. 

The first and second variant of multi-task method is inspired 

by the SALSA-Lite architecture [12]. For Multi-ACCDOA model 

in Table 1 (a), we increased number of decoder FC block from 4 

to 9, to get 3 track ACCDOA output.  For multi-task model in Ta-

ble 1 (b), soft parameter-sharing using cross-stitch and track-wise 

decoder are incorporated. 

As variant of EINV2 network in Table 1 (c) [8], we replaced 

the MHSA block with a bidirectional GRU block. As shown in Fig. 

1 (c), EINV2-based multi-task network consists of two parts, 

which log-mel spectrograms features with and without IV are fed 

respectively. 

 

Table 1. Description of three different single SELD archi-

tectures. 

System Methods Input Features Output 

(a) 
CRNN Multi-

ACCDOA 
Mic SALSA-Lite 

Multi-

ACCDOA 

(b) 
CRNN multi-

task 
Mic SALSA-Lite 

Multi-task 
(SED, DOA) 

(c) EINV2-based FOA Log-mel + IV 
Multi-task 

(SED, DOA) 

 

3.4 Model Ensemble 
 

For the track-wise output format, predictions of sound events can 

be randomly assigned to tracks. Averaging or weighted ensembles 

cannot predict across different tracks, so these methods cannot be 

applied to a track-wise output format. To solve these problem, 

track-wise ensemble model has been proposed [18]. 

The ensemble model architecture is shown in Fig. 2. The in-

put to an ensemble model is the output of a single, distinct model. 
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It has same structure with CRNN multi-task network decoder, but 

it accepts multiple SELD output as input. It handles SED and DOA 

separately. To improve per track result, soft parameter-sharing is 

used. The ensemble model predicts the outcome in the form of a 

track-wise output. 

 

 

4. EXPRERIMENTAL RESULTS 

 

4.1 Experimental settings 

 

The sampling frequency is set to 24 kHz. The STFT is used with 

a 20 ms frame length and 10 ms frame hop. 128 mel bins for log-

mel spectrograms and IV features. The frame length of input to 

the networks is 1,000 frames. We use a batch size of 128. Each 

training sample is generated on-the-fly. We gradually increase the 

learning rate to 0.0001 with 20,000 iterations. After the warmup, 

the learning rate is decreased by 10% if the SELD score of the 

validation do not improve in 40,000 consecutive iterations. We 

use the AdamW optimizer with a weight decay of 10−6. 

 

 

Table 2. Ensemble configuration. 

Ens. Base system 

Ensemble #1 

 CRNN multi-ACCODA 

CRNN multi-task × 2 

EINV2-based multi-task × 3 

Ensemble #2 
CRNN multi-task × 2 

EINV2-based multi-task × 2 

Ensemble #3 

 CRNN multi-ACCDOA 

CRNN multi-task model × 2 

EINV2-based multi-task × 5 

Ensemble #4 
CRNN multi-task model × 2 

EINV2-based multi-task × 4 

 

 

 

4.2 Experimental Results 

 

A single model was trained based on 3 type of SELD architectures, 

and the results of single model were used as input for the ensemble 

model. The models used for the ensemble are listed in Table 2.  

Table 3 shows the performance for single SELD network and 

model ensemble from them. The different models are compared 

for performance on the evaluation dataset. 

From the experimental results, in the case of a single model, 

EINV2 has the best overall performance. In the case of CRNN-

based multi-task model, 𝐸𝑅20° showed higher performance than 

other single models. The results of ensemble of heterogeneous 

models with different characteristics showed lower compared to 

single EINV2-based multi task model, but improved performance 

in other metrics. Among the four ensemble models, the ensemble 

#1 model combined with CRNN multi-task model, EINV2-based 

multi-task model and multi-ACCDOA-based model showed the 

best overall performance. 

 

 

Table 3. SELD performance of our systems. 

Methods ER20° F20°(macro) LECD LRCD 

Baseline 
(FOA) 

0.71 21% 29.3° 46% 

Baseline 

(MIC) 
0.71 18% 32.2° 47% 

CRNN multi-
ACCDOA 

0.53 47% 17.5° 61% 

CRNN  

multi-task 
0.55 46% 18.0° 67% 

EINV2-based 
multi-task 

0.62 52% 17.0° 70% 

Ensemble #1 0.49 53% 15.8° 68% 
Ensemble #2 0.48 51% 16.4° 67% 
Ensemble #3 0.49 52% 15.8° 66% 
Ensemble #4 0.48 52% 16.3° 65% 

 

5. CONCLUSION 

Our approach present DCASE2022 task 3: sound event localiza-

tion and detection (SELD) with directional interference. In this re-

port, we proposed track-wise ensemble method to combine outputs 

of each single learned system. The single learned system consisted 

of CRNN multi-task network using MIC data and EINV2-based 

multi-task network using FOA data. Moreover Multi-track ADPIT 

was applied to derive sound event detection (SED) and DOA esti-

mation. To improve the network model, we further use generated 

multi-channel signals by convolving spatial room impulse re-

sponses (SRIRs) with source signals manually extracted from the 

sound sample database. Experiments show that the proposed net-

work achieves improved performance when compared to the base-

line model for the DCASE2022 challenge task3. 
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