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ABSTRACT

In this work, we describe the jointly submitted systems by Forte-
media Singapore (FMSG) and Nanyang Technological University
(NTU) for DCASE 2022 Task 4: sound event detection in domes-
tic environments. The proposed framework is divided into two
stages: Stage-1 focuses on the audio-tagging system, which assists
the sound event detection system in Stage-2. We train the Stage-
1 utilizing a strongly labeled set converted into weak predictions,
a weakly labeled set, and an unlabeled set to develop an effective
audio-tagging system. This audio-tagging system is then used to
infer on the unlabeled set to generate reliable pseudo-weak labels,
which are used together with the strongly labeled set and weakly
labeled set to train the sound event detection system at Stage-2.
In Stage-1, we used two different networks, which are frequency
dynamic (FDY)-convolutional recurrent neural network (CRNN)
and convolutional neural network (CNN)-14 based pretrained au-
dio neural networks (PANNs) for our developed systems. While the
system at Stage-2 is based on FDY-CRNN for all the systems sub-
mitted to the challenge. It is noted that the systems at both stages
employ data augmentation to reduce the risk of overfitting, and ap-
ply adaptive post-processing techniques to further enhance the per-
formance. On the DESED real validation dataset, we obtain the
highest PSDS1 and PSDS2 of 0.474 and 0.840, respectively.

Index Terms— Sound event detection, semi-supervised learn-
ing, CRNN, interpolation consistency training, DCASE 2022.

1. INTRODUCTION

The goal of sound event detection (SED) is to identify the tem-
poral onset and offset and categorize specific sound event types
in a variety of sound environments. Its applications include audio
surveillance in a variety of environments such as smart homes and
cities [1]. The detection and classification of acoustic scenes and
events (DCASE) challenge series aim to spearhead the research and
developments in SED applications as one of the challenge tasks.

This technical report describes our systems submitted to
DCASE 2022 Task 41 on sound event detection in domestic envi-
ronments. This is a follow-up of DCASE 2021 Task 4, whose goal
is to recognize sound events inside audio clips utilizing training data
from real recordings that are both weakly labeled and unlabeled, as
well as synthetic audio clips that are extensively labeled. Addition-
ally, this year, participants are encouraged to leverage external data
and pre-trained models to improve the SED systems.

1http://dcase.community/challenge2022/

In our submission, we employ two neural networks with the
system divided into two stages and multiple strategies as below:

• Frequency dynamic (FDY)-convolutional recurrent neural net-
work (CRNN) [2] and convolutional neural network (CNN)-14
based pretrained audio neural networks (PANNs) [3].

• Interpolation consistency training (ICT) [4] to enhance model
robustness.

• Weak training with transformed strong labels into weak labels
to improve audio-tagging.

• Infer on the unlabeled set to generate reliable pseudo-weak la-
bels to improve sound event detection performance.

To further improve the performance, we perform:

• Data augmentation methods including mixup [5], frame-
shift [6], Gaussian noise addition, filter-augmentation [6] and
time-masking [7] to increase data diversity.

• Exponential softmax pooling function [8] to replace the atten-
tion pooling in the baseline.

• Asymmetric focal loss [9] to replace binary cross-entropy loss
function.

• Adaptive median-filtering for each class to smooth the outputs.

The remainder of the technical report is structured as follows:
The dataset used to train and validate the systems is discussed in
Section 2. Section 3 details the two-stage architecture, with the
training methods used in each stage. Section 4 reports the methods
for improving the system’s robustness. In Section 5, we described
the configuration of each system submitted in the challenge. Fi-
nally, Section 6 presents the results of the submitted systems on the
DESED real validation set.

2. DATASET

The dataset for the task is primarily based on the DESED [10]
dataset, being used since DCASE 2020 Task 4. It is composed of
10 seconds audio clips either taken from AudioSet [11] or synthe-
sized with isolated sound events and backgrounds using Scaper2 to
simulate a domestic environment. The development training set is
divided into 3 major subsets:

• 1,578 real recordings with weak annotations.
• 14,412 real recordings, unlabeled in the domain training set

2https://github.com/justinsalamon/scaper
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Figure 1: The two-stage learning setup, with Stage-1 focusing on
audio-tagging and Stage-2 focusing on sound event detection.

• 10,000 synthetic recordings with strong annotations.
• This year, an additional subset retrieved from the recently re-

leased strongly labeled subset of AudioSet consisting of 3,470
real recordings with strong annotations is also released, which
is considered as external data.

The development validation set contains, 1,168 real recordings with
strong annotations.

3. TWO-STAGE ARCHITECTURE

We adopted a two-stage setup as the basic framework, with Stage-
1 focused on audio-tagging and Stage-2 focused on sound event
detection [12], as illustrated in Figure 1. The Stage-1 system is
used to generate reliable pseudo-weak labels from the unlabeled set
that are used by Stage-2 for training. This section further explains
the stages in detail.

3.1. Stage-1

In this work, taking inspiration from a prior work [6], which utilizes
only the weakly labeled set, we propose a weak training method to
have an improved audio-tagging system at Stage-1. We converted
the strongly labeled set into a weakly labeled set by removing the
onset and offset and keeping the event labels as weak predictions.
Then we trained the audio-tagging system using pseudo-weak labels
from the strongly labeled synthetic and real set, weakly labeled set,
and unlabeled. We used two different architectures in the Stage-1,
which are described in the following subsections.

3.1.1. FDY-CRNN

We used frequency dynamic convolution proposed in [2] that ap-
plies frequency adaptive kernel in order to enforce frequency de-
pendency on 2D convolution. In the baseline [13] depicted in Fig-
ure 2 (a), we replaced the normal convolutional blocks with FDY-
convolutional blocks, as illustrated in Figure 2 (b). The CNN fea-
ture extractor is composed of 7 layers with each layer having 16,
32, 64, 128, 128, 128, 128 feature maps, respectively, and a kernel
size of 3 × 3. In the FDY-convolutional block, batch normaliza-
tion [14] is applied after each convolution followed by gated linear
unit (GLU) [15] as the non-linear activation function.

3.1.2. CNN-14 based PANNs

We employed CNN-14 based PANNs for pre-trained embeddings as
the feature extractor as an alternative to FDY-CRNN in Stage-1. The
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Figure 2: Stage-2 setup (a) CRNN used in baseline (b) FDY-CRNN.

embedding features are used as an input to the bidirectional gated
recurrent unit (Bi-GRU). The parameters of the PANNs embeddings
are unfrozen and trained. It is noted that the setup is fine-tuned
on the DCASE 2022 Task 4 dataset. The 14-layer CNN feature
extractor consists of 6 convolutional blocks. Each convolutional
block consists of 2 convolutional layers with a kernel size of 3× 3.
In addition, each convolutional layer is followed by batch normal-
ization [14] and ReLU [16] non-linearity to stabilize the training.
Average pooling of 2 × 2 is applied to each convolutional block
for down-sampling. The RNN part following the feature extractor
is composed of 2-layers of Bi-GRU with 1024 hidden units. The
output of the RNN is followed by a dense layer with sigmoid acti-
vation to produce frame-level predictions, and the aforementioned
linear layer is multiplied by a dense layer with a softmax activation
function to produce clip-level predictions.

3.2. Stage-2

In this work, we used the audio-tagging (Stage-1) based system to
make predictions on the unlabeled set to use them as pseudo-weak
labels in Stage-2 training, as illustrated in Figure 1. We believe
this way we are able to generate reliable pseudo labels, which can
help the SED model at Stage-2. In Stage-2, we only used the FDY-
CRNN based frequency-dependent architecture described in Sec-
tion 3.1.1. It is trained on pseudo weakly labeled set, in addition to
the strongly labeled set and the weakly labeled set.
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4. METHODS

4.1. Semi-Supervised Learning

In this work, we use mean teacher (MT) [17], a semi-supervised
learning approach, to learn from unlabeled training data. The mean
teacher technique is made up of two network models: the student
model and the teacher model. Both of the models have the same ar-
chitecture, where the student’s weights are updated using gradient
back propagation, and the teacher’s weights are updated as an ex-
ponential moving average of the student weights after each epoch.

In addition to MT, we employ another semi-supervised learning
method called interpolation consistency training (ICT), which is ap-
plied to both the stages [4]. It trains the model to provide consistent
predictions at interpolations of unlabeled points (uj , uk), as shown
below:

fθ(λuj + (1− λ)uk) ≈ λf ′
θ(uj) + (1− λ)f ′

θ(uk) (1)

where fθ and f ′
θ denote a student model and a teacher model, re-

spectively. The λ is randomly sampled from the Beta distribu-
tion [4]. The ICT substitutes all input samples with interpolation
samples helping the model to improve the generalization ability,
thus our loss function is a sum of the baseline loss function and
loss with the interpolation samples as the inputs.

4.2. Data Augmentation

To artificially increase the amount of data and avoid the risk of over-
fitting, we used several data augmentation techniques during the
training in both stages, such as time-masking [7], frame-shifting [6],
mixup [5], addition of Gaussian noise and filter augmentation [6].
Time-masking applies weights to the bins of time-frequency rep-
resentation, whereas frame-shifting shifts the features and labels
along the time-axis. Again, mixup randomly mixes selected sam-
ples with a mixing parameter, helping in linear interpolation to im-
prove the robustness of the model. In addition, filter augmentation,
which uses varying weights on random frequency regions, has been
shown to significantly improve SED performance.

4.3. Pooling Function

Taking inspiration from a prior work [8], we employed exponential
softmax to replace the attention pooling used in the baseline. The
exponential softmax function assigns a weight of exp(yi) to the
frame-level probability yi as given below:

y =

∑
i yi exp(yi)∑
i exp(yi)

(2)

where yi is the predicted probability of an event occurring in the ith

frame. This implies that, with a higher prediction probability, the
higher the exponential weight is assigned to the frame-level proba-
bility. Hence, it is better under the stringent evaluation criteria for
the correctness of the category.

4.4. Asymmetric Focal Loss

Asymmetric focal loss (AFL) [9] function is used to control the
training weight depending on the ease and difficulty of the model

training. The AFL function for each kth data point with target sound
event as yk and predicted sound event as pk is given below:

lAFL(p, y) =

K∑
n=1

[(1− pk)
γyk ln pk + (pk)

ζ(1− yk) ln(1− pk)]

(3)
where the parameters γ and ζ are the weighing hyperparameters
given as the input to the function that controls the weight of active
and inactivate frames.

4.5. Adaptive Post-Processing

We adopted adaptive post-processing in all the experiments where
the median filter window sizes (Win) are different for each event
category c calculated based on the varying length of each event in
real life as given below:

Winc = durationc × βc (4)

We took the median duration as durationc as for some event cate-
gories as the variance of the duration is large. Here, we used β = 1

3
and then manually adjusted the window sizes on the validation set.
The smoothed result is then converted into binary outputs in the
range [0,1] using a threshold of 0.5, as in the baseline.

5. EXPERIMENTAL SETUP

The audio clips are re-sampled at 16kHz to a mono channel us-
ing librosa3. They are then segmented using a window size of
2048 samples for each subsequent frame with a hop length of 256
samples. The short-time Fourier transform (STFT) is applied on
the segmented waveforms to extract their spectrograms. Then log-
mel spectrograms are constructed by applying mel-filters in the fre-
quency domain spanning from 0 to 8 kHz, followed by a logarith-
mic operation. The clips with a duration less than 10 seconds are
padded with silence. The batch sizes for all the experiments are [12,
12, 24]. We employed Adam optimizer [18] with a learning rate
of 0.001. All the systems described in the further subsections use
the interpolation consistency technique, described in Section 4.1.
To evaluate the systems, we used polyphonic sound event detection
scores (PSDS) [19] on two different scenarios that emphasize dif-
ferent system properties. The system was developed using PyTorch
Lightning4 and trained on NVIDIA Quadro RTX 5000. The follow-
ing subsections further describe the details of the baselines and our
four systems submitted in DCASE 2022 Task 4.

5.1. Baseline-1 (B-1)

The Baseline-1 system given by the organizers utilizes a single-
stage CRNN architecture [13]. The CNN part is composed of 7 lay-
ers and the RNN part is composed of two layers of bi-GRU with 128
hidden units. The system is trained on synthetic strongly labeled set,
weakly labeled set, and unlabeled set using a mean-teacher model
approach for 200 epochs.

5.2. Baseline-2 (B-2)

The Baseline-2 system5 given by the organizers is the additional
baseline with the same architecture as that of Baseline-1, utilizing

3https://librosa.org/doc/latest/index.html
4https://pytorch-lightning.readthedocs.io/en/latest/
5https://github.com/DCASE-REPO/DESED task
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AudioSet strongly labeled set in addition to the synthetic strongly
labeled set, weakly labeled set, and unlabeled for training.

5.3. Submission-1 (S-1)

We used a two-stage setup in this system submission without the use
of any external dataset or pre-trained embeddings, with both stages
based on FDY-CRNN trained for 200 epochs each. With the Stage-
1 focusing on audio-tagging and Stage-2 on SED. We employed
data augmentation methods such as time-masking, frame-shifting,
mixup, and addition of Gaussian noise in Stage-1. Additionally, we
utilized the AFL function described in Section 4.4 with γ=0.125
and ζ=4 to replace the binary cross-entropy loss function. We also
replaced the attention pooling with an exponential softmax function.
In Stage-2 based on FDY-CRNN, we used pseudo-weak labels for
the unlabeled set generated from Stage-1 using a threshold value
of 0.5 in addition to the strongly labeled set, and weakly labeled
set. It also employed time-masking, frame-shifting, mixup and filter
augmentation for data augmentation, and used the AFL function
with γ=0.625 and ζ=1.

5.4. Submission-2 (S-2)

This submission considers only Stage-1 of the two-stage setup to
perform audio-tagging and submit the outputs based on it. In this
submission, we utilized the CNN-14 based PANNs as pre-trained
embeddings instead of the FDY-CRNN architecture used in S-1.
The model was trained on weak set, unlabeled set and with syn-
thetic, and real strongly labeled set transformed into weak predic-
tions as indicated in Section 3.1. During inference, we used the
exponential softmax function to replace the attention pooling. We
utilized time-masking, frame-shifting, mixup, and the addition of
Gaussian noise for data augmentation in this setup.

5.5. Submission-3 (S-3)

This submission uses the S-2 as the Stage-1 system of the two-stage
setup, since PANNs are well known for audio-tagging. We believe
this allows us to generate more reliable pseudo-weak labels for the
unlabeled set utilized for training at Stage-2. The Stage-2 of this
submission follows the same setup as that in S-1.

5.6. Submission-4 (S-4)

In this submission, we use S-2 as the Stage-1 similar to that in S-3
described in the previous subsection. However, the Stage-2 of this
submission has some variations from the system in S-3. We used an
exponential softmax function described in Section 4.3 to replace the
baseline’s attention pooling. In the sigmoid function, we also fine-
tuned the temperature parameter to 1.9 instead of its default value
of 1. Here, the AFL function is used with γ=0.125 and ζ=4 as the
hyperparameters.

6. RESULTS

Table 1 shows the performance of our submitted systems and their
comparison to the baselines of DCASE 2022 Task 4 on the real vali-
dation set. We observe that our submission S-1 without any external
dataset or pre-trained embeddings significantly outperforms the two
baselines. This shows the effectiveness of the FDY in CRNN mod-
els as well as the two-stage learning setup, which employs weak
training with strong labels at Stage-1 in this work. The importance

Table 1: Performance of the baselines and our submitted systems
on the real validation set of DCASE 2022 Task 4.

System PSDS1 PSDS2
B-1 0.336 0.536
B-2 0.351 0.552
S-1 0.474 0.730
S-2 0.102 0.840
S-3 0.472 0.721
S-4 0.088 0.837

of pre-trained models for SED applications is observed from the
usage of CNN-14 based PANNs in submissions S-2, S-3, and S-
4. In addition, comparing submission S-2 with S-3, further shows
the reliability of the two-stage setup for both aspects of the PSDS
metric. While the performance of submission S-4 depicts that the
two-stage framework can be adjusted towards aiming an effective
audio-tagging, which can be seen from its PSDS2 score.
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