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ABSTRACT

This technical report describes our submission to the DCASE 2022
challenge, Task 6 A: automated audio captioning. In our system, we
explore the use of pre-trained language models for the audio cap-
tioning task. The proposed system is an encoder-decoder architec-
ture consisting of a pre-trained PANN encoder and a GPT2 decoder.
Audio embeddings are encoded to language model prompts using a
simple mapping network. We further develop our system by em-
ploying strategies of guiding the decoder with textual information.
We prompt the decoder with keywords extracted from semantically
similar audios and use them to choose the best matching caption by
their occurrence.

Index Terms— audio captioning, encoder-decoder, audio sim-
ilarity, keyword extraction

1. INTRODUCTION

In the task of audio captioning, it is crucial to provide a descriptive
summary of sound events in the presence of acoustic background.
This requires an understanding of the semantics of sound and the
ability to comprehend and produce intelligible text.

Solving such a task requires a high degree of expressive power;
therefore, we address this challenge by using pre-trained networks
for sound comprehension and, following [1], we experiment with
the use of pre-trained language models.

The difficulty of this task is also due to the specificity and vari-
ability in Clotho’s descriptions, i.e., for a single sound example, the
captions may describe different scenes that evoke a given sound. To
facilitate the model generation process, we experiment with prompt-
ing the decoder network with additional keywords.

2. DATA

The training is performed on the provided Clotho dataset [2], as
well as AudioCaps[3]. We experimented with the Hospital & Car
dataset, where we translated the captions to English with DeepL, but
we found that it does not improve results on the Clotho evaluation
split. For AudioCaps, we use the standard train-validation split. For
Clotho, we train on the development and validation subsets, and
validate on the evaluation subset1.

∗Dawid Kiciński is the corresponding author.
1According to Clotho naming, as opposed to DCASE Challenge naming.

In an attempt to gather more data, we downloaded around
500 000 descriptions from Freesound, and trained a binary clas-
sifier to tell them apart from Clotho captions. The classifier was
tasked to output 0 for Freesound and 1 for Clotho. The idea was
that Freesound labels with outputs close to 1, i.e., the failure points
of the classifier, would be useful audio captions similar to those
in Clotho. We then downloaded all the samples corresponding to
captions with an output score above 0.05, after filtering out those
shorter than 3 seconds and longer than 2 minutes. This resulted in
around 19 000 additional training examples.

The classifier was built by adding three fully connected lay-
ers of size 256 on top of the all-mpnet-base-v2 model
from SentenceTransformers[4], with ReLU activation, and a single
sigmoid-activated output neuron.

Table 1: Datasets that are used for two-stage training. For the first
training stage, the model is trained on concatenated AudioCaps and
collected by us samples from Freesound. In the next stage, the
model is fine-tuned only on the Clotho development split. In to-
tal, 96 672 samples were used for developing our system.

# training samples # validation samples
Pre-training datasets

AudioCaps 45 797 2275
Freesound 16 968 1887

Fine-tuning datasets
Clotho 24 420 5225

3. METHOD

3.1. Architecture

The basis of our system is a standard encoder-decoder architecture.
The key idea is to encode audio in a rich embedding space and
then have the decoder generate a sequence of words based on this
encoding.

Encoder The encoder is the PANNs[5] CNN14 model. Audio
embedding is obtained by taking the output from the penultimate
layer. This results in a reduction of an entire audio track into a
single embedding with a dimension of 2048. The encoder was pre-
trained on AudioSet[6] on the multi-label classification task. We
believe that such encoding will contain sufficient information about
the acoustic scene and audio events occurring in the sound. Since
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Figure 1: A representation of the multi-modal input to our system. Here, K0...N denotes the indexes of tokenized keywords, C0...M indexes of
tokenized captions, and E denotes modality embedding. Audio and text are separately encoded using their respective methods. The positional
embeddings are then added to the encoding concatenation. Finally, such a representation is fed into the decoder.

the use of PANNs models has become common in audio pattern
recognition and audio captioning, we will omit a background de-
scription of the model architecture.

Empirically we found out that it worked best if encoder
parameters remained frozen.

Mapping network Models for text generation are traditionally
trained using only text modality. This raises a significant challenge
with using pre-trained language models - how to translate between
different independent latent spaces of models that have not been
trained jointly. Following the idea presented in [1], we use a
linear mapping layer that maps audio embedding into a single
prefix vector of the size of decoder input embedding size. We
experimented with different prefix lengths and mapping networks,
but this approach proved to be the best.

Decoder In our system we experiment with the classic
transformer[7] architectures. We investigated two settings: 1) a
GPT2[8] model pre-trained on causal text generation task, and 2)
a simple 2-layer transformer with the embedding size of 256 and 8
attention heads. Table 2 compares the number of parameters for the
two proposed settings.

Table 2: Number of parameters for two settings that we use during
our experiments.

setting # parameters
w/ 2-layer transformer 104.7 M
w/ GPT2 206.6 M

3.2. Keyword prompting

To reduce the search space for caption decoding, we explore the idea
of prompting the decoder network with additional textual informa-
tion in a form of keywords. We create a database of audio-caption
pairs using Clotho development split. For each pair we extract and
store a set of a single-gram keywords with KeyBert[9] as well as the
pre-computed PANNs embedding. We compare two audios by the
cosine distance between two normalized embedding representation.

When a new recording comes in, we search for the best match-
ing audio in our database and use a stored there set of keywords.

3.3. Caption generation

Two text generation methods are used in our system: 1) Beam
search with beam size of three 2) Combination of Top-k and Nu-
cleus sampling[10] with keyword guided sample selection. For the
list of sampled captions, we select the one that contains the largest
number of keywords of the best matching other audio from the train-
ing set.

Sampling parameters were selected empirically, k was set to 10,
p to 0.70 and number of drawn samples to 20.

3.4. Data preprocessing

To take full advantage of the capabilities of the pre-trained encoder,
we keep our audio preprocessing configuration consistent with the
PANNs CNN14 model. Audio features are 64-dimensional log-mel
spectrograms extracted from resampled to 16 kHz audio.

For captions to match the text preprocessing in evaluation pro-
tocol, we remove all punctuation marks, lowercase all letters, and
then, depending on the decoder used, we apply a different tokeniza-
tion scheme. In the case of GPT2, pre-trained BPE tokenization
was used, and to meet the expectations of the model expected input,
<endoftext> tokens were added at the beginning and end of the
captions. For transformer trained from scratch, we apply word-level
tokenization with a 10 000 token vocabulary constructed from the
training data. <BOS> and <EOS> tokens are added to the caption
to indicate the caption’s start and end.

In a setting where we additionally prompt the decoder with key-
words, we use the <SEP> token to separate them from the caption.
The model input is constructed by concatenating keywords, audio
embedding, and caption. A visualization of this construction can be
seen in Figure 1

3.5. Augmentations

The complexity of the task and the scarcity of data make overfit-
ting an issue. Therefore, several data augmentation techniques were
applied. Following [11], we apply Random Crop and Random
Padding to keep the audio length under 30 seconds. Then, the
white Gaussian noise, whose SNR varies randomly form 10 dB to
120 dB is added to audio with a probability of 0.5.
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Finally, the SpecAugment is applied with two masks per axis.
We use masks with a maximum width of 64 for the time axis and a
width of 8 for the frequency axis.

3.6. Experiments details

In order to take advantage of all the collected data and make our
system generate captions that better match those found in Clotho,
we used a two-stage training in which we first pre-trained the model
on data from AudioCaps and Freesound and then tuned it on Clotho.
Table 1 shows the quantification of what data and how much was
used in each stage.

In the first phase of training, the AdamW optimizer is used
with the default set of parameters except for the initial learning rate,
which was set to 1 × 10−4. After 500 warmup steps learning rate
was linearly decreased over 50 epochs Then in the second phase,
we fine-tune the decoder in the same training set up with a learning
rate set to 5× 10−5 for five more epochs.

In all our experiments, we use a batch size of 128. To further
mitigate overfitting, dropout is set in the decoder to 0.4.

4. EVALUATION

The evaluation results on Clotho development-test dataset for our
sumbited systems are given in Table 3. Comparing to DCASE2022
Task 6a baseline system, our solutions score higher on the evalua-
tion metrics.

We observe that 1) using pre-trained language models provides
no advantage over training such a model from scratch; 2) our at-
tempts at directing the decoder by giving it a prior in the form of
keywords did not work as we expected. We suspect that there was a
too weak correlation between keywords and target caption.

Table 3: Scores for evaluation metrics for Clotho evaluation split.

Method CIDEr SPICE SPIDEr

Baseline 0.358 0.109 0.233

GPT2 0.393 0.117 0.255

+ keywords prefix 0.378 0.119 0.249

Transformer 0.433 0.125 0.279
+ guided generation 0.400 0.121 0.260

5. CONCLUSION

This technical report describes our submission for DCASE2022
Task6a challennge in which we investigated the use of pre-trained
language-models in the context of audio-captionning as well as
utilizing multi-modal prefixes in open-ended text generating. Al-
though our proposed methods did not perform very well, we con-
sider them an exciting starting point that we may develop in the
future.
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