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ABSTRACT

This report proposes anomalous sound detection (ASD) methods
using domain generalization and specialization techniques for the
DCASE 2022 Challenge Task 2. We propose two-stage ASD sys-
tems consisting of an outlier exposure-based feature extractor and
an inlier modeling-based anomalous detector in serial. We further
employ two approaches to deal with domain shift: a domain gener-
alization approach and a domain specialization approach. Each ap-
proach improves performance significantly by adding several tech-
niques to the two-stage ASD systems, such as generating pseudo-
target domain data by Mixup and utilizing pseudo-anomalous data
from Audioset. Our final systems are obtained by ensembling sev-
eral systems with several hyperparameters for each approach. The
proposed systems achieve 81.15 % in the harmonic mean of all ma-
chine types, sections, and domains for the area under the curve
(AUC) and partial AUC (p = 0.1) on the development set.

Index Terms— anomalous sound detecion, outlier exposure,
inlier modeling, domain shift, mixup

1. INTRODUCTION

This report describes unsupervised anomalous sound detection
(ASD) methods developed for the DCASE 2022 Challenge
Task 2 [1]. This task aims for machine condition monitoring and re-
quires detecting unknown anomalous data using only normal data.
We propose two-stage ASD methods for this task. In the first stage,
a feature extractor is trained by introducing an outlier exposure (OE)
approach that classifies normal and pseudo-anomalous data. In the
second stage, to create an anomalous detector, inlier modeling (IM)
is employed to model the probability distribution of normal data us-
ing the features obtained from the feature extractor created in the
first stage. During inference, data that deviates from the probabil-
ity distribution of normal data is detected as an anomaly. Datasets
used in this task [2, 3] are subject to a domain shift in which the
surrounding environment and the operating conditions of the ma-
chine change between the training and test data. In DCASE 2021
Challenge Task 2 [4], the domain to which the test data belonged is
known in advance, but in this task, the domain to which the test data
belongs is not known. We employ two approaches to address this
issue. The first approach, which we call the domain generalization
approach, is to develop systems that generalize domain differences.
The systems can be used with this approach without caring about
domain shifts. However, there is a trade-off between generalization
performance and detection performance. Another approach to ad-
dress this issue, which we call the domain specialization approach,
is to develop systems specialized for each domain and combine the
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Figure 1: An overview of the two-stage ASD method.

identification results with a domain classifier. Finally, we ensemble
these systems tuned with several hyperparameters to maximize the
detection performance.

We conduct an experimental evaluation of the developed system
using the DCASE 2022 Task 2 Challenge development datasets.
Here, the datasets [2, 3] contain seven machine types. Each ma-
chine type has six section IDs, reflecting a domain shift scenario
type. The training data contains domain data for both the source
and target domains, but only a few samples of target domain data.
Experiments on the datasets show that all of the created systems
significantly outperformed the official baseline system in the evalu-
ation metric, the harmonic mean of the area under the curve (AUC),
and partial AUC (p = 0.1) for all machines types, and section
IDs (all/har-mean). The domain generalization approach achieved
80.71 %, and the domain specialization approach achieved 81.15 %
on the all/har-mean.

2. METHOD

2.1. Two-stage ASD method

As the base of our system, we use [5] as the ASD method. An
overview of the method is shown in Figure 1. The method consists
of two stages: a feature extractor using OE and an anomalous detec-
tor using IM. When training the feature extractor, this method ex-
plicitly divides the training method according to the type of pseudo-



Detection and Classification of Acoustic Scenes and Events 2022

Target machine type
@® Other machine type

ID 00
ID 05 \ /ID 01

. ’_ae
R X X

/ "'f.:c \
L4 TSI

' é © 0 S
ID04 | s¢Qav*4 .

Figure 2: A schematic image of embeddings obtained by the two-
stage ASD method. Pseudo-anomalous data are distributed in the
center of the hypersphere, and normal data are distributed away
from the center of the hypersphere for each ID.

anomalous data. It allows for cases in which normal and pseudo-
anomalous data distributions are highly similar or different. This
method obtains the feature extractor by multi-task training of two
types of binary cross-entropies. The first is a loss function that clas-
sifies the sound of the target machine type to which section ID it is
emitted from, which deals with the case where the normal data and
the pseudo-anomalous data are highly similar. The second is a loss
function that identifies whether the sound is emitted from the target
machine type or not, which deals with the case where the normal
data and the pseudo-anomalous data are highly different. Figure 2
shows a schematic image of an embedding obtained by the method.

If the audio input is represented as z; (¢ = 1,2,...,N), the
machine type is represented as ¢; (i = 1,2,..., N), where ¢; is 1
for the target machine type and O for the other machine types. Each
machine type has K section IDs, and x; belongs to one of them.
The one-hot vector for the section ID is represented as yy; xy (1 =
1,2,..,N,k =1,2,..., K), where y(; ) is 1 for the k th element
and O for the other elements when the section ID is k. The section
IDs classification loss is calculated as follows:

[rsection =

N K
1
eSS {108 (0 (grection (F()))
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(D
where f is an encoder, gsection 1S @ linear transformation, and o is a
sigmoid function. The machine type classification loss is calculated
as follows:

Lmachine = —% Z {ti10g (U (gafﬁne (Hf (i) ||2)))
+(1 = t:)log (1 — o (gasine (|1 () %))},

where gafine 1S an affine transformation. When creating mini-
batches, we use a batch sampler so that the value of ¢ is 1:1. The
final loss function is calculated by the following equation:

@

[» = [«machine + Asectiorul:section7 (3)

where Agection 1S @ hyperparameter. During inference, the anomaly
score a; (i = 1,2, ..., N) is calculated as follows:

a; = A(h(f (X)), @
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where A is a set of S segments that divide x; into 7" seconds, allow-
ing for overlap, h is an anomalous detector by IM such as Gaussian
mixture models (GMM) [6, 7], local outlier factor (LOF) [8], or k-
nearest neighbor algorithm (KNN) [9] and .A is an aggregator of the
anomaly scores such as average / max / median pooling.

2.2. Improvement of a feature extractor

‘We make two changes to improve the feature extractor.

The first is to use Audioset [10] as pseudo-anomalous data
when training the feature extractor by OE. It improves the robust-
ness of anomalous data whose distribution differs significantly from
normal data.

The second is to use not only EfficientNet-BO [11] but also Con-
former [12] and Transformer [13] for the models used in the feature
extractor. We obtain feature extractors that focus on different fea-
tures using convolutional neural network-based and self-attention-
based models.

As a result, these modifications especially improve the target
domain performance.

2.3. Domain generalization approach

The key to domain generalization is treating data from the source
and target domains as the same. We employ two techniques for
domain generalization.

The first is to sample the normal data in the target domain in
creating a mini-batch so that at least one sample in the target do-
main is in the mini-batch when training the feature extractor by OE.
It reduces the problem of data imbalance between the source and
target domains.

The second is to use a Mixup [14] of source and target domain
data to generate 50 samples of pseudo-normal data when training
the anomalous detector by IM. It is effective since it models the
intermediate data representation in the source and target domains as
normal data.

2.4. Domain specialization approach

The key to domain specialization is treating data from both the
source and target domains as different data. We employ two tech-
niques for domain specialization.

The first is to use only data from each domain when training
the anomalous detectors for each domain. Although the number
of the target domain data is small, the performance of the target
domain data is improved compared to modeling it using the source
and target domain data.

The second is the development of a high-performance domain
classifier. The domain classifier plays an important role in the do-
main specialization approach. The reason is that if the performance
of the domain classifier is poor, the performance degrades due to
differences in the distribution of anomaly scores between the source
and target domains when weighted averaging. The domain classifier
is implemented by adding a new domain classification module to the
feature extractor in Section 2.1. The domain classifier is trained by
extending the training by OE. We create the mini-batch so that it
includes 1/4 of the source domain’s data, 1/4 of the pseudo-target
domain’s data, and 1/2 of preudo-anomalous data. The pseudo-
target domain’s data is generated by mixing up the target domain
and pseudo-anomalous data.The domain classification module then
classifies the domain of the normal data. Here, the domain is set
tod; (i = 1,2,...,N), where 1 is the target domain, and O is the
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Table 1: Evaluation results. The values represent the harmonic mean of AUC (%) and pAUC (p = 0.1) [%)] for each section of source domain.
The value in the column “all/har-mean” represents the harmonic mean of AUC and pAUC over all machines and sections.

Method beraing fan gearbox slider valve ToyCar ToyTrain all/har-mean
Official Autoencoder-based baseline 54.42 78.59 68.93 7795 52.01 90.41 76.32 67.29
Official MobileNetV2-based baseline 60.55  70.75 69.19 65.05 67.66 67.66 57.57 63.04
I.Kuroyanagi et al [5] 64.76  70.78 7836  93.08 92.03 63.40 63.70 73.36
Domain generalization approach 69.46  68.90 78.98 9452 9233  73.58 72.46 77.46
Domain specialization approach 68.16  73.87 79.44 94.18 92.18 74.82 79.08 79.30
Domain generalization approach per machine ~ 84.99  80.41 86.10 96.09 96.28  82.29 76.59 85.55
Domain specialization approach per machine 90.38  84.21 90.82 96.66 97.42 91.03 84.86 90.52

Table 2: Evaluation results. The values represent the harmonic mean of AUC [%)] and pAUC (p = 0.1) [%)] for each section of target domain.
The value in the column “all/har-mean” represents the harmonic mean of AUC and pAUC over all machines and sections.

Method beraing fan gearbox slider valve ToyCar ToyTrain all/har-mean
Official Autoencoder-based baseline 58.38  47.18 62.64 47.67 4946  34.81 23.35 43.45
Official MobileNetV2-based baseline 60.09 4822  56.23 3840 5775  57.5 45.79 50.90
I.Kuroyanagi et al [5] 76.01  61.07 65.41 68.58 84.84 5442 45.99 62.89
Domain generalization approach 88.43  63.52 66.61 69.16 83.16  64.32 50.19 67.29
Domain specialization approach 85.91 63.17 68.48 76.46 88.52 @ 67.22 53.27 69.93
Domain generalization approach per machine ~ 91.66  75.28 81.21 86.90 9130 75.58 61.55 79.14
Domain specialization approach per machine 91.38  78.49 82.13 90.38 93.52  80.24 66.66 82.28

source domain. For pseudo-target domain data, d; is the mixing ra-
tio; for pseudo-anomalous data, d; is 0. The domain classification
loss is calculated as follows:

N
—ZN% >t {08 (0 (gaomsin (1))

+(1 = di)log (1 — o (gaomain (f(2:))))},

Edomain =

where gdomain 1 a linear transformation. The final loss function for
the domain classifier is obtained by the following equation:

L" == ['machine + )\scction['scction + )\domainﬁdomainy (6)

where Adgomain is @ hyperparameter. The probability of the target
domain p; (i = 1,2, ..., N) is calculated as follows:

Pi = (gdomain (f (i) /), @

where k£ = 0.15 is a hyperparameter for varying the scale of the out-
put of the domain classifier. The anomaly score a; (i = 1,2, ..., N)
for the domain specialization approach is calculated as follows:

a; = (1 - pi)&sourcc, + pidtargcti, (8)

where dsource; and dtarget; are anomaly scores standardized by
each section ID for the source and the target domain, respectively.

2.5. Ensemble

For both approaches, ensembles are effective in improving perfor-
mance. When ensembling, the anomaly scores are standardized by
each section ID before being used since the output scales differently
depending on the anomalous detectors h. The domain generaliza-
tion approach obtains anomaly scores by selecting multiple models
and averaging them. The domain specialization approach selects
multiple models from each domain and averages to obtain anomaly
scores for the source and target domains. Finally, the anomaly score
is obtained by Eq. 8.

3. EXPERIMENTAL EVALUATION

3.1. Experimental conditions

We evaluated the performance of the proposed systems using the
DCASE 2022 Task 2 Challenge development sets (MIMII DG [3],
ToyADMOS2 [2]). The datasets included seven machine types:
bearing, fan, gearbox, valve, slider, ToyCar, and ToyTrain. Each
machine type had six-section IDs, and each sample belonged to
one. Each section ID was given 990 samples of normal data in
the source domain and ten samples in the target domain. Each do-
main was given 50 samples of normal and anomalous data for the
test data. Each recording was a single-channel, 10 sec. segment
of audio sampled at 16 kHz. For training of the feature extractor,
Train € {80, 85,90} % of the source domain data and six samples
of the target domain data were used. The remaining samples were
used to validate the training of the feature extractor and to train
the anomalous detector. The feature extractors were trained for
Nepoecn € {150,200, 250,300} epochs, where one epoch means
that all normal source domain data was updated once. We used the
1.8 million samples of Audioset [10] that were available for down-
load as pseudo-anomalous data.

The amplitude of the audio input sequence was standardized
to have a mean of 0 and a variance of 1. The audio input se-
quence was extracted as Mel-spectrogram with a window size of
128 ms, a hop size of 16 ms, and 224 Mel-spaced frequency bins in
the range of 50-7800Hz in 2.0 sec. The feature was passed to the
encoder f using EfficientNet-BO [11], Conformer [12], or Trans-
former [13]. The scheduler was OneCycleLR [15], and the opti-
mizer was AdamW [16] with the learning rate of 0.001. The batch
size was set to 128. Asection in Eq. 3 was set to 10 and Agomain
in Eq. 6 was set to 1. It was a hyperparameter that whether or
not using Mixup to obtain intermediate features between normal
and pseudo-anomalous data during training for the feature extrac-
tor. GMM, LOF, or KNN were used for the anomalous detector h.
The hyperparameter of the anomalous detector h was the number
of components for GMM or the number of neighbors for LOF or
KNN, where it was one of {1, 2,4, 16,32}. During inference, we
divided 10.0 sec. clips into S = 10 segments with overlapping. As
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Table 3: Evaluation results. The values represent the harmonic mean of AUC %) and pAUC (p = 0.1) [%)] for each section of target domain.
The value in the column “all/har-mean” represents the harmonic mean of AUC and pAUC over all machines, sections and domains.

Method beraing fan gearbox slider valve ToyCar ToyTrain all/har-mean
Official Autoencoder-based baseline 54.07 58.23 61.86 5742 50.53 5147 58.59 56.10
Official MobileNetV2-based baseline 58.59  57.15 5890 5131 6248 6248 51.26 56.31
I.Kuroyanagi et al [5] 6740 6506 7134 7396 91.05 59.60 51.64 66.75
Domain generalization approach 7325 6533 72.50 75772 9121  67.12 54.18 69.81
Domain specialization approach 7138  66.32 73.34 79.06 9243  70.71 57.18 71.56
Domain generalization approach per machine ~ 86.87  75.38 8246 9045 9494 7723 65.40 80.71
Domain specialization approach per machine 87.81 78.15 84.35 89.34 9633  79.03 62.53 81.15

Table 4: Domain classification results. The values represent the mean of AUC (%] for each section. The value in the column “all/mean”

represents the mean of AUC over all machines and sections.

beraing fan

gearbox

slider valve ToyCar ToyTrain all/mean

domain classification model 77.45 92.90

65.30

75.15 7038  98.68 99.82 82.81

a result, each segment was 7" = 2.0 sec. The GMM used the nega-
tive log-likelihood as the anomaly score, while the LOF and KNN
used the outlier score. The aggregator A was used one of the mean,
maximum, median, and mean above the median.

3.2. Experimental results

Tables 1, 2, 3, and 4 show the performance of the source domain,
the performance of the target domain, the performance of both do-
mains evaluated together, and the performance of the domain classi-
fier, respectively. We compared the performance of following seven
systems.

Official Autoencoder-based baseline It was an IM-based anoma-
lous detector that used an autoencoder. It was trained to min-
imize the reconstruction error of the normal training data to
obtain small anomaly scores for normal sounds. The anomaly
score was calculated as the reconstruction error of the observed
sound.

Official MobileNetV2-based baseline It was an OE-based
anomalous detector that used MobileNetV2 [17]. It identified
from which section ID the observed signal was generated. The
anomaly score was calculated as the averaged negative logit of
the predicted probabilities for the correct section.

I. Kuroyanagi et al. [S] It was the two-stage ASD method de-
scribed in Section 2.1.

Domain generalization approach It was the average anomaly
score of the top 20 performing systems obtained by the domain
generalization approach. It used the same hyperparameters for
all machine types. It was used as submission 1.

Domain specialization approach It was the average anomaly
score of the top 20 performing systems obtained by the domain
specialization approach. It used the same hyperparameters for
all machine types. It was used as submission 2.

Domain generalization approach per machine It was the aver-
age anomaly score of the top 20 performing systems obtained
by the domain generalization approach. It used the best hyper-
parameters for each machine type. It was used as submission 3.

Domain specialization approach per machine It was the average
anomaly score of the top 20 performing systems obtained by the
domain specialization approach. It used the best hyperparame-
ters for each machine type and domain. It was used as submis-
sion 4.

As a result, the proposed systems outperformed the perfor-
mance of the official baselines and the conventional method. We
compared the domain generalization approach with the domain spe-
cialization approach. The domain specialization approach had bet-
ter all / har-mean performance. The performance differences of each
approach were significant, especially when using hyperparameters
optimized for each machine type, as shown in Table 1 and Table 2.
However, the performance of both domains evaluated together was
small between each approach, as shown in Table 3. It could be due
to the inadequate performance of the domain classifiers when mix-
ing their respective scores. The domain classifier scores in Table 4
shows that fan, ToyCar, and ToyTrain were well classified, but the
other machine types had poor classification performance. The poor
performance of the domain classifier reflected anomaly scores from
different domains. Another possibility was that the distribution of
anomaly scores for different domains differ; ToyTrain achieved ad-
equate domain classifier performance, but the performance of both
domains evaluated together was lower than that of source and target
domains. We believed it was because even with standardization in
each section ID, the anomaly scores still scale differently, and the
thresholds used for anomaly detection were different. The results
indicated that both approaches have their advantages and disadvan-
tages.

4. CONCLUSION

We proposed ASD methods using domain generalization and spe-
cialization techniques for the DCASE 2022 Challenge Task 2. The
proposed systems were two-stage ASD systems that used an OE-
based feature extractor and an IM-based anomalous detector in se-
ries. We proposed two approaches to deal with domain shifts: a
domain generalization approach and a domain specialization ap-
proach. Each approach made several techniques to the two-stage
ASD system and significantly improved their performance by en-
sembling several systems. Future work will focus on developing
systems that can achieve higher performance with a single model,
even in a domain-shifted environment.
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