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ABSTRACT

This document presents a summary of our models used in the Auto-
mated Audio Captioning task (6a) for the DCASE2022 challenge.
Four submissions were made using different decoding methods :
beam search, top k sampling, nucleus sampling and typical decod-
ing.

Index Terms— convolutional encoder, transformer decoder,
beam search, top-k sampling, nucleus sampling, typical sampling

1. INTRODUCTION

Automated Audio Captioning (AAC) is a task that aims to describe
an audio signal using natural language. An AAC system must be
able to detect different types and lengths of audio events, which
may overlap each other. The output is a short sentence containing
a description of the events with temporal, spatial or physical rela-
tionships between them. Those systems could be used for hearing-
impaired people, machine-to-machine interaction, surveillance or
information retrieval.

The DCASE2022 AAC challenge propose to build an AAC sys-
tems design for the Clotho dataset, and this report summarizes the
models used in our submissions. Our submission focuses on ex-
perimenting with stochastic methods used in text generation for au-
tomated audio captioning. The source code will be available on
Github 1 after the end of the challenge. We also developed a facility
package to load AAC datasets called ”aac-datasets” [1] available on
PyPi.

2. SYSTEM DESCRIPTION

2.1. Data processing

The dataset provided for the challenge is Clotho [2], which contains
6974 audio files from Freesound between 15 and 30 seconds. Each
audio is described by 5 captions annotated by humans. To extract
audio features, we resample audio signals from 44.1KHz to 32KHz
and compute log-Mel spectrograms with a window size of 32ms,
a hop size of 10ms and 64 Mel bands. Captions are put in lower-
case and punctuation is removed. The captions are tokenized using
the spaCy tokenizer [3], which gave a vocabulary containing 4370
different words in the training subset.

1https://github.com/Labbeti/dcase2022task6a

2.2. Model architecture

We adopt a standard encoder-decoder structure used in most AAC
systems, with a pre-trained encoder to extract audio features and
a transformer decoder to generate our caption. The encoder is the
CNN10 model, a convolutional network from the Pretrained Audio
Neural Networks study [4] (PANN) pretrained on AudioSet [5] for
audio-tagging. We used the weights available on Zenodo 2 to initial-
ize the model at the beginning of the training. An affine layer was
added to project 512-dimensional to 256-dimensional embeddings.
We kept the time axis in the audio embedding for the decoder.

The decoder is a standard transformer decoder [6] based on the
official PyTorch implementation. It takes the audio embeddings as
inputs and all the previous words predicted. The word-embeddings
are randomly initialized and learned during training.

2.3. Decoding methods

During inference, we typically use beam search to generate our sen-
tences. It improves the generation by exploring multiple sequences
at the same time, that usually helps to find better sentences than
greedy search. However, both of these methods tend to generate
repetitive sequences and produce the most frequent words [7, 8].
In our experiment with beam search, the model only used 398 dif-
ferent words out of 4370 possible words for the model and out of
3516 words in the evaluation subset. This is why we propose to use
sampling methods used in text generative models.

The network models the conditional probability P (y|x), where
y = (y0, ..., yn) and x the audio embedding input. At each step i
of greedy decoding, we choose the next word with the highest con-
ditional probability P (yi|x, y0..(i−1)). For beam search, we kept
the top b next words for each step until an end-of-sentence token
is reached. Once all sequences are finished, the sentence with the
highest conditional probability divided by the number of words will
be chosen.

For sampling methods, directly sample from the model’s prob-
abilities leads to degenerated sentences, so we need to more care-
fully choose which words can be sampled at each step. All of these
3 methods define a subset of words S from which the next word will
be sampled.

Top-k sampling [9] propose to sample only from the k most
probables words. k is a hyperparameter between 1 and the vocabu-
lary size.

Nucleus sampling [8] propose to define the subset of words by
using each word’s probabilities. We only sample a word from the
smallest subset whose sum of word probabilities is greater or equal

2https://zenodo.org/record/3987831
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N° System Hparams B1 B2 B3 B4 METEOR ROUGE-L CIDEr SPICE SPIDEr Vocab

- Baseline b = 4 0.555 0.358 0.239 0.156 0.164 0.364 0.358 0.109 0.233 -

- Greedy search b = 1 0.542 0.335 0.213 0.132 0.163 0.364 0.328 0.113 0.220 463
1 Beam search b = 9 0.555 0.357 0.240 0.157 0.170 0.374 0.367 0.118 0.242 395
2 Top-k k = 4 0.488 0.279 0.160 0.085 0.154 0.329 0.241 0.106 0.174 602
3 Nucleus p = 0.3 0.532 0.322 0.200 0.121 0.161 0.354 0.303 0.111 0.207 506
4 Typical τ = 0.8 0.457 0.245 0.135 0.067 0.140 0.310 0.198 0.090 0.144 584

Table 1: Results on the evaluation subset of Clotho v2.1. Higher score is better.

to a hyperparameter p. More formally, the nucleus sampling defines
the subset of words S which minimize :

min
S

∑
y∈S

P (y|x, y0..(i−1)) (1)

Typical decoding [10] is similar to nucleus sampling by adding
a parameter τ that defines a range of conditional probabilities. The
subset S is defined by the following equation :

min
S

∑
y∈S

|H(P (.|x, y0..(i−1))) + logP (y|x, y0..(i−1))| (2)

where H(.) denote the entropy and P (.|x, y0..(i−1)) the output
probabilities of the model at step i.

2.4. Implementation

To optimize our network, we used Adam [11], with learning rate set
to 5.10−4 at the first epoch, weight decay set to 10−6, β1 set to 0.9,
β2 set to 0.999 and ϵ set to 10−8. We used a cosine learning rate
scheduler with the following rule :

lrk =
1

2

(
1 + cos

(kπ
K

))
lr0 (3)

with k being the current epoch index, and K the total number
of epochs.

The transformer decoder use a main embedding dimension
dmodel set to 256, with the number of attention heads h set to 4, a se-
quence of 6 standard decoder layers and a dropout Pdrop set to 0.2.
The last affine layer contains 4370 neurons matching the vocabulary
size. We also added a label smoothing of 0.1 to reduce overfitting
and a gradient clipping of 10 to avoid collapsing during training.
The hyperparameters used by decoding methods are in Table 1. The
final encoder-decoder model results in 16.5M trainable parameters
(4.8M in CNN10 and 11.7M in transformer decoder). Our imple-
mentation uses PyTorch [12] and PyTorch-Lightning [13].

3. RESULTS

The results in Table 1 shows our 4 submissions with the standard
beam search and the 3 stochastic methods. The sampling reveal to
be lower than using beam search. As expected, the vocabulary used
is increased in the sampling methods, and we can see a negative
relation between SPIDEr and the vocabulary size used. Some gen-
erated captions may be syntactically incorrect due to sampling, but
it would be interesting to see if these captions can be preferred by
humans over the beam search captions.
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