
Detection and Classification of Acoustic Scenes and Events 2022 Challenge

TAKE IT EASY: RELAXING CONTRASTIVE RANKING LOSS WITH CIDER
Technical Report

Theodore LAMORT DE GAIL, Dawid KICIŃSKI

Samsung R&D Institute Poland
Warsaw, Poland

t.lamort@samsung.com, d.kicinski@partner.samsung.com

ABSTRACT

This report presents our approach and results for task 6B of the
DCASE2022 challenge concerning natural-language-based audio
retrieval. To match the audio-text pairs, we learn cross-modal em-
beddings. The audio samples are encoded by an ensemble of four
frozen expert models with transformer heads for time aggregation.
Captions are encoded using a pre-trained language model. The
model is trained with a modified contrastive ranking loss, enhanced
with a heuristic caption similarity prior based on the CIDEr metric.
We train the system on the AudioCaps and Clotho audio captioning
datasets. Furthermore, we use a text classifier to gather additional
useful audio-caption pairs from Freesound. We achieve 0.48 R@10
and 0.23 mAP@10 on the Clotho evaluation split (vs 0.19 and 0.07
respectively for the challenge baseline).

1. INTRODUCTION

The difficulty of this task, compared to its computer vision coun-
terpart, is mainly due to the small amount of data available. In our
approach, we propose to remedy this by (1) gathering additional
data from Freesound in a semi-supervised fashion based on sen-
tence classification (section 2), and (2) make heavy use of transfer
learning, with four large-scale pre-trained audio expert models, as
well as a language expert model.

We base our general framework on the work of Onescu et al.
(2021) [1], which is the current state-of-the-art solution for text-to-
audio retrieval on the Clotho dataset. We improve on their results
by using a different aggregation strategy for the output of the audio
experts: we apply transformers to the time series of embeddings,
and replace the collaborative gating mechanism by unnormalised
arithmetic mean, as detailed in section 3. In section 4, we explain
how we also modify the loss function to (1) use CIDEr [2] similar-
ity as a prior for caption embedding similarity, and (2) pull audio-
caption embedding pairs closer together with a matching similarity
loss component.

In section 5, we report our results on the evaluation split
of Clotho v2, showing that they significantly outperform the
DCASE2022 challenge baseline system. We also report our results
on Clotho v1, showing that they outperform the solution in [1].

2. DATA

The training is performed on the provided Clotho dataset [3], as
well as AudioCaps[4]. We experimented with the Hospital & Car
dataset, where we translated the captions to English with DeepL, but
we found that it does not improve results on the Clotho evaluation

split. For AudioCaps, we use the standard train-validation split. For
Clotho, we train on the development and validation subsets, and
validate on the evaluation subset1.

In an attempt to gather more data, we downloaded around 500K
descriptions from Freesound, and trained a binary classifier to tell
them apart from Clotho captions. The classifier was tasked to out-
put 0 for Freesound and 1 for Clotho. The idea was that Freesound
labels with outputs close to 1, i.e., the failure points of the classifier,
would be useful audio captions similar to those in Clotho. We then
downloaded all the samples corresponding to captions with an out-
put score above 0.2, after filtering out those shorter than 3 seconds
and longer than 2 minutes. This resulted in around 15 thousand ad-
ditional training examples. Here is a sample of the captions found
this way:

1. Something is behind me and it’s running towards me

2. The creaking and low rumbling of a ship or wooden space

3. Shower Water Running Drip

4. Flipping through the pages of a book quickly, multiple times

5. Steady engine noise in flight

6. A small amount of natural water running through a forest

7. Car passes on a country road, right to left making a whistling
sound

8. A single thunder clap with rain

9. People talking and reverberation

10. Birds singing in the early morning + a car passing on a wet
road

The classifier was built by adding three fully connected lay-
ers of size 256 on top of the all-mpnet-base-v2 model from
SentenceTransformers -[5], with ReLU activation, and a single
sigmoid-activated output neuron.

3. ARCHITECTURE

We train an audio encoder and a caption encoder with the same
output dimension to learn cross-modal embeddings. At infer-
ence time, the matching audios are chosen using cosine similarity.
For caption embeddings, we use SentenceTransformers[5], model
all-MiniLM-L6-v2, which has an output dimension of 384.
To encode audio, we first pre-compute per-time-frame embeddings
from four expert models.

1According to Clotho naming, as opposed to DCASE Challenge naming.



Detection and Classification of Acoustic Scenes and Events 2022 Challenge

Figure 1: Audio encoder architecture

1. OpenL3[6, 7]. We use this2 PyTorch implementation. The
model has an inference window of 1 s. We use a hop length
of 0.5 s. We choose mel256 as input representation, env
as content type and 512 as the embedding size. This results
in approximately 2 embedding frames per second, and 512
embedding dimensions.

2. PANNs[8]. We employ the Cnn14 16k model available
here3. In the original architecture, an embedding vector is
constructed from the CNN output by first averaging over
the frequency axis, and then taking the sum of the average
and the maximum along the time axis. We remove the time
aggregation operation, to get an output shape of about 3.1
embedding frames per second, and 2048 embedding dimen-
sions.

3. VGGSound[9]. We use a ResNet-18 model pre-trained on
the VGGSound dataset. It can be accessed here4 (model H).
We remove the VLADNet aggregation module, and aggre-
gate the CNN output by averaging over the frequency axis.
We found that the number of embedding frames per sec-
ond produced this way was very high, so we added a one-
dimensional average pooling layer along the time axis, with
kernel size 60 and stride 40 to make the size more manage-
able. This results in about 2.3 frames per second and 512
embedding dimensions.

4. VGGish[10]. We use this5 PyTorch implementation, with-
out any modification, to produce one embedding frame per
second, with dimension 128.

These time series of embeddings are sent through a single fully
connected layer, and then fed into transformer networks. For each
audio expert, we have a separate two-layer network with an inter-
nal dimension of 256, amounting to approx. 1.3M parameters each.
These networks are based on the encoder from BART[11]. For each
of the transformer outputs, we take the mean over the time axis to
get a single embedding vector per audio expert, and we map it to

2github.com/torchopenl3/torchopenl3
3github.com/qiuqiangkong/audioset tagging cnn
4github.com/hche11/VGGSound
5github.com/harritaylor/torchvggish

Table 1: Audio expert models used

Parameters Frames / sec Dimension
OpenL3 4 687 042 2 512
PANNs 81 033 231 3.1 2048
VGGSound 11 328 757 2.3 512
VGGish 72 157 696 1 128

the output dimension of the language model with another fully con-
nected layer. Finally, these four vectors are averaged.

Note that the individual output vectors are not normalised prior
to averaging, but the result is normalised when computing cosine
similarity. Because of this, we can interpret the magnitude of the
individual model outputs as confidence: the smaller the magnitude
of a vector, the smaller the impact on the final result normalised to
the hypersphere.

Since the audio experts embeddings are precomputed, these
transformers and fully connected mapping layers constitute the
trainable part of the audio encoder. Together with the caption en-
coder, which we set to be trainable, we have about 23M trainable
parameters.

4. TRAINING

Loss. At first, we train the system using contrastive ranking loss,
same as [1]. For a given batch, if we let α1, α2, ..., αB be the audio
embeddings and β1, β2, ..., βB be the corresponding caption em-
beddings, and we denote the cosine similarity between αi and βj

by sij then the loss is expressed as

L =
1

B

∑
1≤i,j≤B, i̸=j

[m+ sij − sii]+ + [m+ sji − sii]+

where [·]+ is the hinge function max(·, 0) and m is the margin, set
to 0.2. We found that performance is very sensitive to batch size,
and got best results with a batch size of 512.6

6The training consumed around 15GB of VRAM, after using tricks such
as training with 16-bit native precision. Please note that the footnote marker
is not an exponent in this case.

https://github.com/torchopenl3/torchopenl3
https://github.com/qiuqiangkong/audioset_tagging_cnn
https://github.com/hche11/VGGSound
https://github.com/harritaylor/torchvggish


Detection and Classification of Acoustic Scenes and Events 2022 Challenge

When multiple captions are available per sample, we encode all
of them, and replace the cosine similarity sij = s(αi, βj) with the
average similarity to all caption embeddings, i.e.

sij =
1

ncaps

(
s(αi, β

(1)
j ) + s(αi, β

(2)
j ) + ...+ s(αi, β

(ncaps)
j )

)
.

While it is generally safe to assume that two captions describing
two different samples should be embedded far apart, it could happen
that there are similar captions describing different samples. If two
such captions end up in the same batch, their embeddings will likely
be close together and we will incorrectly punish the model with a
high loss. For this reason, we turn to the CIDEr metric [2]. It gives
us a crude measure of similarity, which we can use to refine our loss
function. If cij is the CIDEr score between caption i and caption j,
we modify the loss as follows:

L =
1

B

∑
1≤i,j≤B, i̸=j

[m·r(cij)+sij−sii]++[m·r(cij)+sji−sii]+

where r the “relax” function, which we still have to choose: if
r = 1, we end up back with the original expression, if r = 0
the loss will be zero in most cases (very relaxed). We take the fol-
lowing approach: we find c80, c90 and c99, the 80th, 90th and 99th
percentiles of all pairwise CIDEr scores in Clotho. We then define
r to be piecewise linear such that:

1. r(c) = 1 for c < c80

2. r(c80) = 1

3. r(c90) = 0.7

4. r(c99) = 0.4

5. r(c) = 0.4 for c > c99

Figure 2: Relax function (not to scale)

This is obviously a very crude heuristic, and there is plenty of
room for exploration and improvement here.

Additionally, we noticed that embeddings of matching audio-
caption pairs had an average cosine similarity of around 0.6. In an
ideal scenario, this should be 1 - we tried to increase this number
by adding a “matching similarity” component to the loss, computed
as LM = − 1

B
(s11 + s22 + ... + sBB). We got best results when

setting the loss to L+ 3LM .

Optimizer. We use AdamW with a learning rate of 1e-4.

Pre-training and fine-tuning. We tried pre-training on
all combinations of Clotho, AudioCaps, and our home-made
Freesound dataset. We got best results when pre-training on
AudioCaps and Freesound but not Clotho, with training pairs
being sampled from both datasets with equal frequency, and then

fine-tuning on Clotho with the same hyperparameters.

Checkpointing and metrics. For saving checkpoints during
training, we monitor validation loss, but also the following valida-
tion scores:

m1 =
1

B
|{i : sii = max

j
(sij)}|

m2 =
1

B
|{j : sjj = max

i
(sij)}|

These correspond to the ranking accuracy versus non matching
captions, and the ranking accuracy versus non matching audio.
From each training, we keep 3 checkpoints per metric. Overall, all
three of these metrics seem to correlate with evaluation mAP@10
metric quite well.

Length of training. We set epoch length to 16 steps. Our
best model was pre-trained for 288 epochs and then finetuned for
8 epochs.

5. RESULTS

For the Clotho evaluation split (according to Clotho naming), we
report the our results for each of our four submissions in Table 2.
Please note that for competition purposes, this split was also used
for validation and checkpointing.

Table 2: Evaluation scores on Clotho v2

R@1 R@5 R@10 mAP@10
1. 0.137 0.354 0.484 0.231
2. 0.137 0.351 0.469 0.229
3. 0.137 0.354 0.470 0.228
4. 0.132 0.350 0.478 0.226

Additionally, to benchmark our system against Onescu et al. [1],
we fine-tuned a separate model using only the development split of
Clotho v1 (with a validation subset randomly selected as 20% of
the development split), and evaluated it on the evaluation split of
Clotho v1. We show the results in Table 3. The results reported
in the aforementioned paper, with pre-training on AudioCaps only,
were 9.6± 0.3 R@1 and 40.1± 0.7 R@10.

Table 3: Evaluation scores on Clotho v1

R@1 R@5 R@10 mAP@10
1. 0.120 0.344 0.478 0.214



Detection and Classification of Acoustic Scenes and Events 2022 Challenge

6. REFERENCES

[1] A.-M. Oncescu, A. S. Koepke, J. F. Henriques, Z. Akata, and
S. Albanie, “Audio retrieval with natural language queries,”
2021. [Online]. Available: https://arxiv.org/abs/2105.02192

[2] R. Vedantam, C. L. Zitnick, and D. Parikh, “Cider:
Consensus-based image description evaluation,” 2014. [On-
line]. Available: https://arxiv.org/abs/1411.5726

[3] K. Drossos, S. Lipping, and T. Virtanen, “Clotho: An
audio captioning dataset,” 2019. [Online]. Available: https:
//arxiv.org/abs/1910.09387

[4] C. D. Kim, B. Kim, H. Lee, and G. Kim, “Audiocaps: Gener-
ating captions for audios in the wild,” in NAACL-HLT, 2019.

[5] N. Reimers and I. Gurevych, “Sentence-bert: Sentence
embeddings using siamese bert-networks,” 2019. [Online].
Available: https://arxiv.org/abs/1908.10084

[6] R. Arandjelovic and A. Zisserman, “Look, listen and learn,”
2017 IEEE International Conference on Computer Vision
(ICCV), 2017.

[7] J. Cramer, H.-H. Wu, J. Salamon, and J. P. Bello, “Look, lis-
ten, and learn more: Design choices for deep audio embed-
dings,” ICASSP 2019 - 2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2019.

[8] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D.
Plumbley, “Panns: Large-scale pretrained audio neural net-
works for audio pattern recognition,” IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, vol. 28,
p. 2880–2894, 2020.

[9] H. Chen, W. Xie, A. Vedaldi, and A. Zisserman, “Vggsound:
A large-scale audio-visual dataset,” in International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP),
2020.

[10] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke,
A. Jansen, R. C. Moore, M. Plakal, D. Platt, R. A.
Saurous, B. Seybold, M. Slaney, R. J. Weiss, and K. Wilson,
“Cnn architectures for large-scale audio classification,” 2016.
[Online]. Available: https://arxiv.org/abs/1609.09430

[11] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed,
O. Levy, V. Stoyanov, and L. Zettlemoyer, “Bart: Denois-
ing sequence-to-sequence pre-training for natural language
generation, translation, and comprehension,” 2019. [Online].
Available: https://arxiv.org/abs/1910.13461

https://arxiv.org/abs/2105.02192
https://arxiv.org/abs/1411.5726
https://arxiv.org/abs/1910.09387
https://arxiv.org/abs/1910.09387
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1609.09430
https://arxiv.org/abs/1910.13461

	 Introduction
	 Data
	 Architecture
	 Training
	 Results
	 References

