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ABSTRACT

The goal of DCASE 2022 CHALLENGE TASK4 is to evaluate sys-
tems for the detection of sound events using real data either weakly
labeled or unlabeled, simulated data that is strongly labeled and ex-
ternal data. In this technical report, we present a two-stage learn-
ing strategy based method to explore synthetic strong data and real
strong data (from AudioSet). Specifically, a CRNN model is used
as the baseline SED system for this year’s challenge. According
to different supervisory signals from weakly-labeled and strongly-
labeled data, the frame-level and clip-level tasks (i.e. SED and Au-
dio Tagging (AT)) are designed. In the first stage, the model is
trained on weakly labeled, unlabeled and synthetic data with strong
labels under the semi-supervised learning framework, i.e. Mean
Teacher (MT). There are two types of MT, including frame-level
MT and clip-level MT, corresponding to the subsets with different
supervisory signals. In the second stage, a new model is trained us-
ing pseudo-labeling scheme, in which the pre-trained teacher model
is utilized to provide the pseudo-label of the real weakly and unla-
beled data. Furthermore, we explore the strongly labeled real data
as external one in both stages. Results on the DCASE2022 Task4
validation set verify the effectiveness of our proposed method with
PSDS1 and PSDS2 of 0.479 and 0.785, outperforming the baseline
results of 0.351 and 0.552 respectively.

Index Terms— Sound Event detection, two-stage, mean
teacher, pseudo labeling, strongly labeled real data

1. INTRODUCTION

Sound event detection(SED) aims to detect both the onset and off-
set of a sound event and classify its categories. It has wide appli-
cations for real-world systems including smart home devices [1],
and automatic surveillance [2]. Due to the difficulty of manu-
ally annotating sound events, only weakly-labeled and unlabeled
dataset are available in DCASE2018 [3]. Semi-supervised learning
(SSL) methods such as mean teacher [4] are introduced to SED and
achieved relatively good results, but strongly-labeled data are still
in urgent need as the field evolves. Recently, synthetic data with
accurate time-stamps have been proposed and get larger and larger
from DCASE2019 to DCASE2021 [5, 6], some methods untiliz-
ing the strongly-labeled data achieved state-of-the-art performance
[7, 8, 9]. However, these methods ignore the domain gap between
synthetic and real audio data. Although several domain adaptation
methods [10, 11] have been proposed for dealing with this problem,
they just achieved small improvement. In DCASE2022, external
data such as AudioSet [12] are allowed to train SED model, which
increase the potential for improving performance. Thanks DACSE

organizers for collecting the in-domain sub-dataset from AudioSet
Strong [13], strongly-labeled real audio join in the field for the first
time. From now on, four different types of data (weakly-labeled,
unlabeled, strongly-labeled, synthetic) are available and need to
be further studied. In this year’s challenge, we aim to evaluate
strongly-labeled and synthetic data with semi-supervised or super-
vised training. We propose a two-stage learning method consists of
mean teacher and pseudo labeling to achieve our goal.

2. PROPOSED METHOD

Fig 1 shows our proposed two-stage training pipeline with CRNN
as backbone and two training strategies include mean teacher[4] and
pseudo labeling[14]. Details will be given in the following subsec-
tions.

2.1. First stage: semi-supervised training with mean teacher

Considering the missing labels of weakly-labeled and unlabeled
data, semi-supervised training methods are used to train SED mod-
els and mean teacher (MT) is the most popular one. Under mean
teacher structure, a input sample goes through two branches named
student and teacher. The student model is trained with available
true labels as well as pseudo labels from a teacher model, while the
teacher model is updated by Exponential moving average (EMA).
The input to student model is perturbed with frequency masking to
regularize the model. In this stage, we have three goals:

(1): evaluate CRNN models trained with different dataset com-
binations under mean teacher structure.

(2): On the basis of (1), explore the effect of adding other two
strategies: Selective Kernel (SK) unit [15] and Regularize GRU (R-
GRU). R-GRU will be present at the end of this section.

(3): obtain the optimal model from the exploration of (1) and
(2) as the teacher model for the next stage.

Total training loss L1stage is defined as:

L1stage = Lclass,BCE + r(t)LMT,MSE + λLR−GRU,MSE (1)

where r(t) is the mean teacher MSE loss weight which first ramp up
to 2 and then keep it. λ is a fixed R-GRU loss weight and we set it
to 15 if use R-GRU.

2.2. Second stage: supervised training with pseudo labeling

The second stage contains two sub-stages. Firstly, weakly-labeled
and unlabeled data get frame-level labels from the teacher model
obtained in the first stage. Secondly, a new CRNN model are
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Figure 1: two-stage training pipeline.

Figure 2: regularize GRU

trained with supervion. SK unit, frequency masking and R-GRU
are still used in this stage. Our main goal is to evaluate CRNN mod-
els trained with pseudo-labeled and either synthetic or real strong
dataset.

Total training loss L2stage is defined as:

L2stage = Lclass,BCE + λLR−GRU,MSE (2)

2.3. Regularize GRU.

It is well known that the position of a sound event within the clip is a
large impact on detection performance [16], we think the overfitting
GRU in CRNN model should be responsible for this phenomenon.
We propose a regularization method to GRU: the output generated
from different sequence modeling process should be same. Inspired
by time-shifting and SCT [17], we apply cycle shift to change se-
quence modeling process as Fig 2 shows.

3. EXPERIMENTS

3.1. Dataset and Feature Extraction

In this year’s challenge, we use DESED train dataset [5] and a
strongly labeled real dataset from AudioSet [13]. DESED train
data consists of three parts: 1) weakly labeled dataset (1578 clips),
2) unlabeled in-domain dataset (14412 clips), 3) strongly labeled
synthetic dataset (10000 clips). The strongly labeled real dataset

(3780 clips) act as external data for training and exploration. The in-
put features used in the proposed system are log-mel spectrograms,
which are extracted from the audio signal resampled to 16000 Hz.
The log-mel spectrogram uses 2048 STFT windows with a hop size
of 313 and 128 Mel-scale filters. As a result, each 10-second sound
clip is transformed into a 2D time-frequency representation with a
size of (512×128).

3.2. Experimental Settings

In both stages, the neural networks are trained using the Adam op-
timizer [18], with a maximum learning rate of 0.001. Total epochs
are 100 and the learning rate ramp up during the first 20 epochs and
ramp down during the remaining epochs. Batchsize is set to 64.

4. RESULTS AND ANALYSIS

4.1. Results of the first stage

4.1.1. evaluation for different dataset combination

we first evaluate several CRNN models trained with different
dataset combinations. We also conduct some experiments with
only weakly-labeled and strongly-labeled data for analysis (with-
out mean teacher). For faster computation, we do not use SK unit
and R-GRU in these experiments. We choose event-based F1 [19]
and PSDS [20] as main metrics. Dataset combinations and results
are shown in Table 1.

With supervised training, W+SR gets worse results among all
metrics than W+SS with event-based F1, PSDS1, PSDS2 decreased
by 0.01, 0.0498, 0.021 respectively. Noisy labels and smaller data
volumn may be two reasons why SR is worse than SS. W+SS+SR is
the best dataset combination. With mean teacher, the model trained
with W+SS+SR gets the highest results. It is worth noting that
W+U+SS+SR gets worse results than W+U+SR which may be a
opposite conclusion compared with supervised training. One pos-
sible explanation is that there is enough samples in W+U+SR and
further adding SS introduced domain gap problems.
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Table 1: evaluation for different dataset combinations within Base-
line. Baseline is a traditional CRNN model whose CNN part is
stacked VGG blocks and RNN part is Bi-GRU.

Training
Method Data EB-F1 PSDS1 PSDS2

Supervised
W1+SS3 0.4598 0.3646 0.6621
W+SR4 0.4496 0.3148 0.6411
W+SS+SR 0.4977 0.3745 0.7096

Mean Teacher
W+U2+SS 0.4840 0.3897 0.6903
W+U+SR 0.5115 0.4056 0.7009
W+U+SS+SR 0.4883 0.3883 0.7007

1 W: weakly labeled real dataset.
2 U: unlabeled real dataset.
3 SS: strongly labeled synthetic dataset.
4 SR: strongly labeled real dataset.

Table 2: evaluation for two strongly labeled dataset.
Data Model EB-F1 PSDS1 PSDS2

W+U+SS
Baseline 0.4840 0.3897 0.6903
+SK 0.5191 0.4162 0.6945
+SK+R-GRU 0.5387 0.4313 0.7028

W+U+SR
Baseline 0.5115 0.4056 0.7009
+SK 0.5160 0.4083 0.6994
+SK+R-GRU 0.5332 0.4286 0.7134

4.1.2. Evaluation for two strongly labeled data with SK unit
and R-GRU

We further evaluate strongly labeled synthetic data and strongly la-
bel real data after applying SK unit and R-GRU. Results are shown
in Table 2. After using SK and R-GRU, W+U+SS achieved 0.5387
EB-F1, 0.4313 PSDS1 and 0.7028 PSDS2, W+U+SR achieved
0.5332 EB-F1, 0.4286 PSDS1 and 0.7134 PSDS2. It is interesting
that SR is no longer better than SS, which is a different conclusion
from the baseline (SR achieved higher results among all metrics
than SS within baseline) . We believe that the noisy labels in SR
limits its potential. Therefore, we make a deeper digging to cam-
pare SS and SR with pseudo-labeled W+U in the next stage. The
CRNN model with SK unit, which trained with W+U+SS and R-
GRU, is choosen as teacher model for the next stage.

4.2. Results of the second stage

Firstly, W+U gets frame-level pseudo labels from the teacher model
described above, then, W+U together with SS or SR are used to train
a new model. When test, we ensemble several single models from
different random seeds to get a higher results. All results are shown
in Table 3.

When using SS, the second stage model get 0.4446 PSDS1 and
0.7331 PSDS2, the ensemble model get 0.4554 PSDS1 with T=3 (T
is temperature as we used last year [15]) and 0.7778 PSDS2 with
T=15. When using SR, the second stage model get 0.4582 PSDS1
and 0.7412 PSDS2, the ensemble model get 0.4790 PSDS1 with
T=3 and 0.7852 PSDS2 with T=15. Both the single model and
ensemble model trained with SR get better results than the model
trained with SS. Data distribution of SS is not same as real data, so
the second stage model trained with all real data(W+U+SR) can get
higher result.

Table 3: evaluation for two-stage learning strategy. SK: Selective
Kernel. R-GRU: Regularize GRU. MT: mean teacher. PL: pseudo
labeling. T: temperature applied on logits.

Data Stage Model PSDS1 PSDS2

W+U+SS

1 SK+MT+R-GRU 0.4313 0.7028
2 SK+PL+R-GRU 0.4446 0.7331

Test *Ensemble 3model
(T=3) 0.4554 0.7260

Test *Ensemble 3model
(T=15) 0.4358 0.7778

W+U+SR
2 SK+PL+R-GRU 0.4582 0.7412

Test *Ensemble 10model
(T=3) 0.4790 0.7352

Test *Ensemble 10model
(T=15) 0.4619 0.7852

5. SUBMISSION SYSTEM

Models with * in Tabel 3 are our four submissions on DCASE 2022
Task4, including two models without external data and two models
with external data.
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