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ABSTRACT

This technical report describes the system we submitted to
DCASE2021 Task4: Sound Event Detection in Domestic Environ-
ments. Specifically, we apply three main techniques to improve the
performance of the official baseline system. Firstly, to improve the
detection and classification ability of the CRNN model, we pro-
pose to add an auxiliary branch to the CRNN network. Consistency
loss of mean teacher method is improved by auxiliary branch. Sec-
ondly, we propose to add an MDTC module to the CRNN network
so that the receptive fields of the network can be adjusted according
to the short-term and long-term correlation. Thirdly, several data-
augmentation strategies are adopted to improve the generalization
capability of the network. Experiments on the DCASE2022 Task4
validation dataset demonstrate the effectiveness of the techniques
used in our system. As a result, the best PSDS1 is 0.408 and the
best PSDS2 is0.754.

Index Terms— Sound Event detection, Semi-supervised learn-
ing, mean teacher, consistency loss

1. INTRODUCTION

Sound Event Detection(SED) is a task that detects both the onset
and offset of sound events and identifies event categories. Our sys-
tem uses CRNN [2] network with mean teacher [3] semi-supervised
learning method based on the official baseline system [4] [5]. We
implement the following methods to improve the network perfor-
mance:

• By adding auxiliary branches into the CRNN network, the con-
sistency criterion of mean-teacher model training is extended
by adding additional consistency loss.

• By adding a Multi-dilation time convolution(MDTC) module
to the main branch of CRNN, sound events’ short-term and
long-term correlations can be modeled by aggregating features
of different time scales.

• Mixup [6], FilterAugment [7] and Cutout [8] data-
augmentation strategies are used to improve the generalization
capability of the detection system.

2. PROPOSED METHODS

2.1. model

Our network structure is based on the CRNN network of the Base-
line system. The feature extractor of CRNN is a stack of 7 con-
volutional layers. The kernel size of each convolutional layer is
(3,3). Each convolution block is followed by a gaussian error lin-
ear unit (GeLU) [10] activation and batch normalization (BN) [11].
Average pooling is performed after each block, 4-times reduce the
output time resolution of the CRNN model, and the frequency axis
is pooled to 1. Then the proposed MDTC module is fed into the
feature extractor, and its output is fed into the bi-directional gated
recurrent unit(Bi-GRU), fully connected layer and Sigmoid to get a
strong prediction and then a weak prediction of 10 acoustic events
are obtained by Linear Softmax.

2.2. Auxiliary branche

Inspired by clip-level consistency training [12], an auxiliary branch
is introduced after the feature extractor to improve the feature rep-
resentation ability and classification generalization ability of the
CRNN network. This branch comprises BI-GRU and classifier and
only computes the consistency loss with the CRNN main branch.
Therefore, the total loss consists of strong prediction loss, weak
prediction loss, the consistency loss of mean teachers, and the con-
sistency loss between the main branch with the auxiliary branch
output.

2.3. MDTC module

After feature extraction by CNN, the frequency dimension is sam-
pled to 1, so a feature is obtained. Inspired by the time convolution
network (TCN) in ConvT-Tasnet [13], we propose an MDTC mod-
ule consisting of cascaded CNN blocks. The expansion factor d of
CNN blocks increases exponentially, which increases the temporal
receptive field. Finally, the output features of each CNN block are
aggregated together through the aggregator to obtain the total out-
put.

2.4. Data augmentation

For all training data, including weakly labeled data, unlabeled data
and synthesized strong labeled data, we use Mixup [6], FilterAug-
ment [7] and Cutout [8] methods to generate augmented data. The
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Figure 1: MDTC module

Mixup method generates augmented data by getting the weighted
sum of the two pieces of data. For FilterAugment, it applies dif-
ferent weights in different frequency bands to generate augmented
data. For Cutout, it generates augmented data by randomly masking
random square areas of time-frequency features.

3. EXPERIMENTAL EVALUATION

3.1. Dataset

We conduct experimental evaluations on the DCASE2022 Task4
dataset. The dataset contains 1578 audio clips with weak labels,
10000 synthesized audio clips with strong labels and 14412 unla-
beled audio clips. In addition, we used 3470 real audio clips as
external data to train.

3.2. Experimental setup

We choose the Adam optimizer with a learning rate of 0.001, and
the total training epoch is 200. Each 10-second audio clip is resam-
pled to 16 kHz. The log-mel spectrogram uses 2048 STFT windows
with a hop size of 255 and 128 Mel-scale filters, so the size of the
input features is 628×128. All experiments were conducted on a
GeForce RTX TITAN GPU 24GB RAM.

3.3. Experimental results

The model we submitted is shown in Table 1. We report the re-
sults of energy consumption (kWh) obtained by Codecaron and the
two main challenge metrics, PSDS-1 and PSDS-2. None of the four
models adopt the model fusion strategy. Model1 and model2 use
attentional layers and average pooling to generate weak predictions
for auxiliary branches. And all of the above techniques are used
simultaneously. Model3 and Model4 have the same network struc-
ture as model1 and model2, respectively, but they use an additional
3470 external data to train.

The experimental results show that using the attentional layer
to generate weak prediction in the auxiliary branch has the best per-
formance for PSDS1, and using average pooling has the best perfor-

Method train(kwh) test(kwh) psds1 psds2
baseline 1.717 0.030 0.336 0.536
model1 2.718 0.017 0.408 0.607
model2 3.771 0.006 0.095 0.754

Baseline(external) 2.418 0.027 0.351 0.552
model3(external) 3.791 0.010 0.398 0.640
model4(external) 3.317 0.015 0.215 0.735

Table 1: Final results of the models submitted

mance for PSDS2. Our overall PSDS(PSDS1 + PSDS2) was 1.162,
29% higher than baseline.
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