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ABSTRACT 

In this technical report, we describe our submission system for 

the few-shot bioacoustic event detection in the DCASE2022 

task5. Participants are expected to develop a few-shot learning 

system for detecting mammal and birds sounds from audio 

recordings. In our system, Prototypical Networks are used to 

embed spectrograms into an embedding space and learn a non-

linear mapping between data samples. We leverage various data 

augmentation techniques on Mel-spectrograms and introduce a 

ResNet variant as the classifier. Our experiments demonstrate 

that the system can achieve the F1-score of 47.88% on the vali-

dation data. 

Index Terms— Few-shot learning, sound even detec-

tion, Prototypical Networks, embedding space 

1. INTRODUCTION 

Bioacoustic technology is now benefitting from the power of 

deep learning and becomes an effective way to gain information 

on the activities of animals that reflects human’s impact on the 

environment. Traditionally, researchers have conducted the work 

through manually labelling on huge datasets, which is consuming 

both in time and resources [1]. In addition, collecting labelled 

data in some certain animal sounds can be challenging. The 

scarcity of supervised data can lead to poor generalization [1].  

Few-shot learning is proposed to solve the problem of training 

with a limited amount of labelled data. It has emerged as a prom-

ising paradigm for sound event detection. A few-shot learning 

classifier is capable of recognizing novel classes not seen in the 

training set, given only a small number of examples of each new 

class [2]. In previous studies, Prototypical Network (ProtoNet) [3] 

has been increasingly applied to few-shot sound event detection 

and achieved well improved performance. Plus, deep learning 

architectures like CNNs have yielded state-of-the-art results on 

different sound recognition tasks, such as polyphonic sound 

event detection, audio tagging, etc.  

In our proposed system, we first extract Mel-spectrogram from 

the bioacoustic audios and perform Per-Channel Energy Normal-

ization (PCEN) [5] on the resulting spectrograms to account for 

differences between data coming from different sources. Then, 

we apply various spectrogram augmentation techniques to in-

crease the amount of training data to help modelling generaliza-

tion. Finally, we train a ProtoNet model using a deeper and 

stronger embedding classifier - ResNet.  

2. DATA  

2.1. Dataset 

In this challenge, the training set consists of 174 audio record-

ings, 47 classes and 14,229 event instances in total [4]. They 

were acquired from different bioacoustic sources, including 

worldwide birds, spotted hyenas, jackdaws, meerkats, and wet-

lands birds. The sampling rate of each audio varies from 6 kHz 

to 44 kHz. In addition, multi-class annotations are provided for 

the training set with positive, negative, and unknown; we only 

extract and make use of the positive event instances for training 

and testing. The validation set consists of 18 audio recordings, 5 

classes and 1077 positive event instances [4]. 

2.2. Pre-processing 

2.2.1. Mel-spectrogram 

All audio files in both the training set and validation set are first 

resampled to a sampling rate of 22,050 Hz and normalized. The 

audio files are then transformed to Mel-spectrograms with 128 

Mel bins using a FFT size of 1024 samples and a hop size of 256 

samples. The librosa library was employed for this purpose. 

Afterwards, spectrogram images of size F × T where F=17 by 

T=128 are used inputs. Additionally, the validation set is divided 

to positive samples, negative samples, and query samples for 

predictions. 

2.2.2  PCEN 

PCEN has been proposed to normalize a time-frequency repre-

sentation by performing automatic gain control, followed by 

nonlinear compression [5]. Former research used PCEN to miti-

gate the effects of background noise, demonstrating its effec-

tiveness as a preprocessing step prior to convolutional methods 

in sound event detection [5]. Bioacoustic data recorded in the 

wild often have multiple sound sources and uncleaned back-

ground. Therefore, we utilize PCEN to reduce noise presented in 

the Mel-spectrograms and improve robustness to channel distor-

tion. 

2.3. Data augmentation 

In order to increase the diversity of data and the generalization 

ability of the model, we use SpecAugment [6] as the data aug-
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mentation technique. It essentially consists of three transfor-

mations: time warping, frequency masking, and time masking. 

Specifically, they modify a spectrogram by warping it in the 

time direction with a distance factor, mask blocks of consecutive 

frequency channels, and mask blocks of time steps, respectively. 

In our case, we warp the feature to the left by 0.5 s, and mask 

one block of 10 frequency bins and one block of 10 time steps. 

Example of the original spectrogram and augmentation are show 

in Figure 1. With the help of data augmentation, the number of 

training samples is increased to 54,279 from 28630. 

 

 

 

Figure 1: Example of spectrogram augmentation: orginial 

spectrogram (top) and augmented spectrogram with Spe-

cAugment (bottom). 

3. PROTOTYPICAL NETWORKS 

A prototypical network transform and embed the input spectro-

grams into an embedding space using a neural network. Then it 

learns a non-linear mapping in the embedding space where the 

embedded query points are simply classified by matching them 

with the nearest class “prototype” [2]. Consequently, the perfor-

mance heavily depends on the embedding feature extractor. The 

more informative features it produces, the more accurate “proto-

types” can be computed, and more query points will be correctly 

classified, leading to better performance.  

3.1. Model architecture 

The original ProtoNet proposed by Snell et al. [2] consists of 4 

convolutional layers, which can suffer from the problem of van-

ishing gradients and cannot extract features that fit the data well. 

Inspired by Ye et al. [7], we choose the deeper and stronger 

residual networks as the embedding encoder. ResNet architecture 

makes use of shortcut connections that allows information get 

fast forwarded deeper into the network to avoid vanishing gradi-

ents [8].  

Our implementation is based on the ResNet-18. We modify the 

network to obtain a less deep model which only has 3 residual 

blocks to fit the size of the features. The architecture of our re-

sidual network is shown in Table 1. The residual block for this 

architecture is depicted in Figure 2. 

Table 1. Architecture of the presented residual network 

Layers Channels Kernel Size 

Conv2D+ BatchNorm +ReLU 16 3 × 3 

ResidualBlock 64 3 × 3 

ResidualBlock 128 3 × 3 

ResidualBlock 64 3 × 3 

AdaptiveAvgPooling+SoftMax - 3 × 3 

 

 
Figure 2: Residual block for the architecture 

3.2. Training 

Prototypical networks adopt an episodic training procedure 

where in each episode, a mini batch is randomly sampled from 

the training data. A subset of mini batch is used as the support set 

and the remaining is used as query set [9]. We trained the model 

using 2,000 episodes and 5 classes in each minibatch, with Adam 

optimizer and the learning rate of 0.001. Euclidean distance is 

selected as the metric that measures the distance between query 

samples to a prototype. 

4. EVALUATION 

Performance is evaluated using three metrics: precision, recall, 

and F1-score. Table 2 shows the testing results obtained by the 

proposed model in comparison with the DCASE2022 Task 5 

baseline for the 5-way 5-shot task. As can be seen our system 

achieved the highest F1-score of 47.88%, which improves over 

the baseline by a large margin. Moreover, data augmentation 

techniques are proved to be effective, leading to a substantial 

improvement. Notably, it is observed that the recall is lower than 

precision in each system, indicating that the model could miss a 
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fairly number of True Positive instances that are difficult to 

classify.  

Table 2. Overall results on the validation set 

Classifier Feature 
F1-

score 
Precision Recall 

CNN(Baseline) PCEN 29.59% 36.34% 24.96% 

CNN(Baseline) PCEN+Aug 37.16% 42.09% 33.26% 

ResNet PCEN+Aug 47.88% 52.11% 44.30% 

5. CONCLUSION 

In this work, we employ SpecAugment as the spectrogram aug-

mentation technique to increase the generalization ability of 

Prototypical Networks. For networks architecture, we utilize the 

ResNet-18 variant as the embedding space classifier to enhance 

the performance of model. Our proposed system is able to 

achieve the F1-score of 47.88% which improves more than 17% 

absolute over the baseline system based on CNN.  
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