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ABSTRACT

In this technical report, we describe in detail our system for DCASE
2022 Task4. The system combines two considerably different mod-
els: an end-to-end Sound Event Detection Transformer (SEDT)
and a frame-wise model (MLFL-CNN). The former is an event-
wise model which learns event-level representations and predicts
sound event categories and boundaries directly, while the latter
is based on the widely-adopted frame-classification scheme, un-
der which each frame is classified into event categories and event
boundaries are obtained by post-processing such as thresholding
and smoothing. For SEDT, self-supervised pre-training using un-
labeled data is applied, and semi-supervised learning is adopted by
using an online teacher, which is updated from the student model
using the EMA strategy and generates reliable pseudo labels for
weakly-labeled and unlabeled data. For the frame-wise model, the
ICT-TOSHIBA system of DCASE 2021 Task 4 is used, which in-
corporates techniques such as focal loss and metric learning into a
CNN model to form the MLFL-CNN model, adopts mean-teacher
for semi-supervised learning, and uses a tag-condition CNN model
to predict final results using the output of MLFL-CNN. Experi-
mental results show that the hybrid system considerably outper-
forms either individual model, and achieves psds1 of 0.420 and
psds2 of 0.783 on the validation set without external data. The
code is available at https://github.com/965694547/Hybrid-system-
of-frame-wise-model-and-SEDT.

Index Terms— Sound Event Detection Transformer, Online
Pseudo-labelling, Hybrid System

1. INTRODUCTION

Sound Event Detection (SED) aims at identifying the category of
foreground sound events as well as their corresponding onset and
offset timestamps. Task4 of the DCASE challenge has been focus-
ing on weakly supervised SED for several years. The DCASE 2022
Task4 [1] is a follow up of DCASE 2021 Task4 [2], while having
some novel characteristics. In addition to exploring a heterogeneous
development dataset containing unlabeled data, synthetic data and
weakly labeled data, participants are encouraged to incorporate ex-
ternal dataset or pre-trained embeddings. As last year, the SED sys-

tem will be evaluated by Polyphonic Sound Detection Score (PSDS)
[3] under two different real-life settings.

For weakly supervised SED, most existing works follow the
Multiple Instance Learning (MIL) framework, and formulate SED
as a seq2seq classification task. They usually design Convolutional
Neural Networks (CNNs) or Convolutional Recurrent Neural Net-
works (CRNNs) to obtain frame-level classification probability and
then apply pooling mechanism to aggregate frame-level predictions
to event-level results. However, such methods do not take sound
events as a whole, which may impose limitations on their detec-
tion performance. Recently, an event-wise model, namely SEDT,
is proposed to handle such problems [4]. It models SED as a set
prediction problem, which directly maps audio spectrogram to a
set of candidate events, thus freeing SED models from trivial post-
processing, namely frame-level thresholding or median filtering.
Empirical study has shown that SEDT can achieve competitive per-
formance compared with its frame-wise counterparts [4]. Moreover,
we find that the two models can supplement each other, as they
solve SED task in different ways. Therefore, combining them to-
gether may be an intuitive approach to reach promising sound event
detection performance.

In this report, we describe our system participating in DCASE
2022 Task 4. It is a combination of SEDT and frame-wise CNN
model. For SEDT, special-designed training formulas, including
supervised learning, self-supervised learning and semi-supervised
learning, are studied to help it learn from the heterogeneous de-
velopment dataset. For frame-wise CNN model, metric learning is
applied to narrow the domain gap between real and synthetic data,
mean-teacher framework is conducted to provide supervision for
unlabeled data and a tag-conditioned CNN model is used to gener-
ate final predictions based on audio tags. After obtaining each well-
trained model, we explore the fusion strategy and post-processing
methods of the ensemble model. By using the methods above, the
hybrid system achieves competitive results on validation dataset.

2. SEMI-SUPERVISED SEDT

2.1. Sound Event Detection Transformer

An overview of SEDT is shown in Fig. 1. It represents each sound
event as a vector yi = (ci, bi) , where ci is the event category and
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Figure 1: Overview of Sound Event Detection Transformer

bi denotes the temporal boundary, and directly seeks a mapping be-
tween input features and ground-truth events. Given the input spec-
trogram, the backbone CNN is adopted to extract its feature map,
which is then added with one-dimensional positional encoding and
fed into transformer encoder for further feature process. The trans-
former decoder takes N + 1 learned embeddings (N event queries
and 1 audio query) as input, where each event query gathers in-
formation of a potential event from the encoder output feature via
encoder-decoder cross-attention mechanism to generate event-level
representations, and audio query gathers the whole audio informa-
tion to generate clip-level representations. Finally, FFNs are utilized
to transform the event-level representations and clip-level represen-
tations from the decoder into event detection and audio tagging re-
sults, which are then fused together to get the candidate detection
results. De-overlapping is implemented on overlapped candidate
events of the same category. Specifically, it only reserves the events
with the highest class probability. More details can be found in [4].

2.2. Supervised learning for SEDT

SEDT incorporates event-level loss and clip-level loss to optimize
its event detection and audio tagging performance. For strongly-
labeled data, both loss terms will be involved during the SEDT
model training, while for weakly-labeled data, the event-level loss
will be excluded since the strong annotations are not available.
Event-level loss. SEDT introduces a novel label assignment
scheme before computing event-level loss: it tries to find a matching
σ̂i between each event prediction ŷi and its corresponding ground-
truth annotation yi through Hungarian algorithm. To equip SEDT
with sound event classification and localization ability, the loss for
SEDT supervised training is formulated as the weighted linear com-
bination of localization loss Lloc and classification loss Lcls. For
each event prediction, the two loss functions are calculated as:

Lloc =

N∑
i

(
λIOULIOU

(
bi, b̂σ̂(i)

)
+ λL1

∥∥∥bi − b̂σ̂(i)

∥∥∥
1

)
(1)

Lcls =
1

N

N∑
i=1

− log p̂σ̂(i) (ci) (2)

where λIOU and λL1 are corresponding weights for IOU Loss and
L1 Loss.
Clip-level loss. The audio tagging loss is defined as the binary
cross-entropy between the clip-level class label ltag and predicted
audio tagging ytag:

Lat = BCE (ltag, ytag) (3)

2.3. Self-supervised learning for SEDT

To better use the unlabeled dataset and external datasets, such as
AudioSet and SINS, we adopt a self-supervised learning method
to pre-train SEDT on unlabeled data, which is named as Self-
supervised Pre-training SEDT (SP-SEDT). Specifically, we ran-
domly crop spectrogram along the time axis to obtain several
patches, and then pre-train the model to predict corresponding tem-
poral boundaries of the patches. To preserve the category informa-
tion in SP-SEDT, classification loss and patch feature reconstruction
loss are also adopted as sub-objective terms. By means of such pre-
text task, we hope that SEDT can localize sound event and maintain
most category-related features at the same time. More details of
SP-SEDT can be found in [5].

2.4. Semi-supervised learning for SEDT

Pseudo-labelling [6] is one of the mainstream approaches of semi-
supervised learning. It requires a well-trained model to generate
pseudo labels on unlabeled data, so that in the next stage, the con-
verged model can be re-optimized on both labelled data and unla-
beled data jointly. Based on that, we propose an improved pseudo-
labelling method for the Semi-Supervised learning of SEDT(SS-
SEDT). SS-SEDT splits the training process into two stages: the
burn-in stage and the teacher-guided stage. In the burn-in stage,
SEDT is simply trained on the labeled dataset to initialize the
model. At the beginning of the teacher-guided stage, the initialized
model is copied into two models (a student model and a teacher
model), and then the teacher model generates pseudo labels on un-
labeled data so that the student model can gain knowledge from
both labeled data and unlabeled data. To guarantee the quality of
the pseudo labels, we revisit the following off-the-shelf techniques,
and apply them in the teacher-guided process.

• EMA: Unlike previous methods, we resort to a progressing
teacher model to generate pseudo labels. The teacher model is
updated from the student model through Exponential Moving
Average (EMA). Thus, it can be viewed as implicit ensemble
models and provide more accurate pseudo labels.

• Strong and weak augmentation: Strong and weak augmen-
tation has been widely applied in the field of semi-supervised
image classification [7]. Inspired by that, we adopt similar idea
in the teacher-guided stage, during which weakly-augmented
(frequency mask and frequency shift) spectrograms are fed
into the teacher model to obtain pseudo labels and the student
model make predictions on the strong augmented (frequency
mask, frequency shift, time mask and gaussian noise) version
of the same data batch.
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• Mixup [8]: We mix labeled data with ground-truth annotations
and unlabeled data with pseudo annotations together, which is
supposed to improve the model robustness to pseudo annota-
tion noise and alleviate the overfitting problem in model train-
ing.

• Focal loss [9]: Focal loss is adopted to handle the unbalanced
event categories in SED, without which the model may be over-
whelmed by easily classified samples and produce biased out-
puts. It should be noted that focal loss is merely used in the
teacher-guided stage, we believe such pattern may help our
model learn from easy to difficult.

3. FRAME-WISE CNN MODEL

The pipeline of the frame-wise CNN model is illustrated in Fig. 2.
At first, MLFL-CNN is preliminarily trained with weakly labeled
data and strongly labeled synthetic data to acquire basic event de-
tection and audio tagging ability. Then, it attaches pseudo strong
labels to the weakly-labeled and unlabeled data, and the model is
jointly trained with all these data in a self-training manner. Finally,
the trained MLFL-CNN provides audio tags and strong pseudo la-
bels for the weakly-labeled data and unlabeled data to train the tag-
conditioned CNN [10], which gives the final SED results.

Figure 2: Overview of the frame-wise model

The MLFL-CNN model contains three branches. The first
branch is the embedding-level attention pooling branch based on the
MIL framework, which is the same with [11]. The second branch
is the sound event detection branch which is introduced to exploit
the strong labels of synthetic data and uses the focal loss as its loss
function. The third branch is the domain adaptation branch which
uses metric learning by inter-frame distance contrastive loss, more
details of which can be found in [12]. During training process,
the MLFL-CNN adopts the mean-teacher architecture and pseudo-
labelling framework simultaneously [13]. It combines clip-level
loss (for weakly-labeled data), frame-level loss (for data with strong
labels and pseudo strong labels), inter-frame distance contrastive
loss (for real data and synthetic data), and consistency loss together.
And the tag-conditioned CNN takes spectrograms and audio tags
predicted by the MLFL-CNN as inputs, and uses the strong labels
of synthetic data and pseudo strong labels of real data as ground-
truth to train.

4. FUSION OF THE TWO MODELS

4.1. Preliminary: Class-specific PSDS

The essence of PSDS is to obtain a function r(e) of effective TP
rate (eTPR) changing with effective FP rate (eFPR), and calculate

the integral of this function over (0, emax), where emax represents
the maximum value of eFPR value [3]:

µTP =
1

|C|
∑
c∈C

rTP,c σTP =

√
1

|C|
∑
c∈C

(rTP,c − µTP)
2 (4)

eTPR: r(e) ≜ µTP(e)− αST ∗ σTP(e) (5)

PSDS ≜
1

emax

∫ emax

0

r(e)de (6)

The meanings of above notations are consistent with [3]. Accord-
ing to the above definition, we can decouple the eTPR according
to the sound event category and redefine the PSDS value of given
category:

µTP,c = rTP,c σTP,c = rTP,c − µTP,c (7)

eTPRc : rc(e) ≜ µTP,c(e)− αST ∗ σTP,c(e) (8)

PSDSc ≜
1

emax

∫ emax

0

rc(e)de (9)

where PSDSc, eTPRc, µTP,c and σTP,c are corresponding class-
wise indicators for specific event class c.

4.2. Model fusion method

The core of model fusion is to calculate the class-wise fusion coef-
ficients of each model’s prediction during the evaluation stage. As-
sume that there are N models mi(i = 1, 2, . . . N), for each sound
event class c, the PSDS of model mi on c is denoted as PSDSi,c.
Then the fusion coefficient of model i on category c is defined as:

wi,c =
PSDSi,c∑N
i=1 PSDSi,c

(10)

Therefore, for specific event category c, the final fusion proba-
bility p̂c is formulated as the weighted linear combination of each
model’s predicted probability pi,c:

p̂c =

N∑
i=1

wi,c ∗ pi,c (11)

It is noteworthy that the above PSDS in Eq.(10) can be inter-
preted as PSDS1 or PSDS2 for this year’s DCASE task4, so two
different sets of parameters wi,c can be obtained on the develop-
ment set and utilized to improve PSDS1 and PSDS2 respectively.
Besides, in our submitted hybrid system, event-level predictions of
SEDT are firstly converted into frame-level probability, before be-
ing fused with frame-wise model to obtain the final results.

5. POST-PROCESSING

In order to reduce the noise in frame-level probability and make
sound events continuous, it is necessary to perform a smoothing op-
eration on the frame-level probability. Smoothing operation usually
adopts mean filter or median filter. Currently, median filtering with
a fixed window length or with the average length of each event cal-
culated on the development set is generally utilized [14]. In this
paper, we perform median filtering and mean filtering (with larger
window size) on frame-level probabilities in sequence, and propose
a method to search for optimal class-wise window lengths on the
development set.
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Table 1: The PSDS on validation set

System Extra data PSDS1 PSDS2

Baseline 1 0.336 0.536
Baseline 2 ! 0.351 0.552
System 1 ! 0.449 0.645
System 2 ! 0.115 0.816
System 3 0.420 0.618
System 4 0.099 0.783

Table 2: Ablation study on techniques in SS-SEDT

MU FL SWA EMA PSDS1 PSDS2

! ! ! 0.372 0.570
! ! ! 0.349 0.540
! ! ! 0.369 0.566
! ! ! 0.357 0.538
! ! ! ! 0.388 0.573

Specifically, for a given event class c, we enumerate window
length wlc from the shortest frame length 1 to the maximum length
500, and find the optimal window length wlc

∗:

wlc
∗ = argmax

PSDSc

PSDS
wlc

(12)

Similar to Section 4, two different sets of optimal window
length wlc

∗ can be obtained on the development set and applied
to optimize PSDS1 and PSDS2 respectively.

6. EXPERIMENT

6.1. Experiment Setup

For SEDT not using external data, we firstly pre-train it on unla-
beled real subset (14412 clips), then simply train it on the weakly
labeled training set (1578 clips) and synthetic 2019 subset (2045
clips) during burn-in stage, and finally use weakly labeled train-
ing set, synthetic 2019 subset, synthetic 2021 subset (10000 clips),
and unlabeled real subset to conduct teacher-guided learning. For
SEDT using external data, the two main differences compared to the
above lie in: 1.models are pre-trained on both unlabeled real subset
and SINS subset (72894 clips); 2. an additional strongly labeled set
(3470 clips) is further included in the teacher-guided stage. The de-
tailed settings of training hyper-parameters and configurations can
be found in [15].

For frame-wise model not using external data, the training set
contains the weakly labeled training set, the unlabeled training set,
and synthetic 2021 subset. While for systems using external data,
we add the same strongly labeled set taken from AudioSet to the
original strong labeled set. The detailed settings of training hyper-
parameters and configurations can be found in [16].

6.2. Results of Submitted Systems

Table. 1 shows the performance of our submitted systems, all of
which are fused models of ensemble frame-wise CNN models and
ensemble SEDT. Among them, system 1 and 2 incorporate external
data to train the models, while system 3 and 4 do not. Besides,

Table 3: Ablation study on window tuning and model fusion

Id Model MF WT PSDS1 PSDS2

1 Single SEDT 0.415 0.582
2 Ensemble SEDT 0.431 0.607
3 Single frame 0.349 0.668
4 Ensemble frame 0.392 0.673
5 Hybrid system ! 0.437 0.740
6 Hybrid system ! ! 0.449 0.816

model fusion and window tuning methods proposed in Section 4
and Section 5 are utilized in system 1, 3 to improve their PSDS1
and in system 2, 4 to improve their PSDS2. As shown in Table. 1,
our hybrid systems outperform the baseline considerably whatever
the usage of external data.

6.3. Ablation Study

6.3.1. Techniques in SS-SEDT

To verify the effectiveness of techniques in SS-SEDT, we con-
duct ablation study using SS-SEDT without external data. Ta-
ble. 2 shows the results of models trained without specific tech-
nique, where MU, FL, SWA denotes Mixup, Focal Loss, Strong
and Weak Augmentation mentioned in Section 2.4, and the model
without SWA means that the input spectrograms of teacher model
and student model are both weakly augmented. It can be seen that
all techniques can improve the performance of SS-SEDT and SS-
SEDT can finally reach a PSDS1 of 0.388 and a PSDS2 of 0.573
while incorporating all techniques.

6.3.2. Window tuning and model fusion

To investigate the effects of window tuning and model fusion strat-
egy, we conduct ablation study using SEDT and frame-wise model
trained with external data. Table. 3 compares the performance be-
tween models under different settings. In the above table, MF and
WT denotes Model Fusion and Window Tuning methods proposed
in Section 4 and Section 5 respectively, and frame-wise model is
abbreviated to “frame”. Among all these models, model 2 and 4
are ensemble models of top 1-5 single models, while hybrid sys-
tem represents the fused model of ensemble SEDT and ensemble
frame-wise model. By comparing model 1, 2 with model 3, 4, it
is obvious that SEDT can achieve higher PSDS1 while frame-wise
model is better at PSDS2. Moreover, by comparing model 5 with
model 2, 4, we can see that while SEDT and frame-wise model have
their own edges, they can complement each other, since the hybrid
system achieve further improvements of 0.006 and 0.067 compared
to single ensemble models. By comparing model 6 with model 5,
the effectiveness of window tuning can be validated, since model 6
provides the best PSDS1 (0.449) and PSDS2 (0.816).
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