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ABSTRACT

In this technical report, we present our system for the task 5 of
Detection and Classification of Acoustic Scenes and Events 2022
(DCASE2022) challenge, i.e. few-shot bioacoustic event detection.
First, per-channel energy normalization (PCEN) is extracted as fea-
tures. In order to improve the diversity of original audio, some
data augmentation methods are adopted, for example, specaugment.
Then, the prototypical network with convolutional neural networks
(CNN) and the transductive inference method are used for few-shot
detection in our systems. Finally, we use aforementioned features
as inputs to train our CNN model. Moreover, we merge the pre-
diction results of improved prototypical network and transductive
inference method for better performance. We evaluate the proposed
systems with overall F-measure for the whole of the evaluation set,
and our best F-measure score on the validation set is 64.77%.

Index Terms— DCASE, few-shot bioacoustic event detection,
PCEN, prototypical networks, transductive inference

1. INTRODUCTION

Bioacoustic event detection in audio is an important task for auto-
matic wildlife monitoring, as well as in citizen science and audio
library management [1]. Bioacoustic event detection is a very com-
mon required first step before further analysis, and makes it possible
to conduct work with large datasets (e.g. continuous 24h monitor-
ing) by filtering data down to regions of interest. Few-shot learning
is a highly promising paradigm for scarce bioacoustic event detec-
tion. For the main assessment, we will use the F-score measure of
detection performance.

In previous studies, the prototypical network as classifiers have
recently shown improved performances over existed methods in
few-shot acoustic event detection [2]. And CNN has provided state-
of-the-art results on various polyphonic sound event detection and
audio tagging tasks [3]. Besides, good results have been achieved
by using unsupervised or semi-supervised methods to deal with lim-
ited labeled data, and some works have attempted to augment few-
shot learning with the benefit of learning from unlabeled data, such
as increasing the labeled set by using additional unlabeled samples
through pseudo-labeling [4, 5]. In recent years, more and more peo-
ple have paid attention to the application of few-shot learning in the
field of acoustic event detection and classification. Szu-yu Chou [6]
et al. introduced a novel attentional similarity module for few-shot
sound recognition problems, which can be inserted into any metric-

based learning method for few-shot learning, thus enabling the gen-
erated model to specifically match relevant short sound events. Yu
Wang [7] et al. developed a method for automatically constructing
partial labeled samples (negative samples) to reduce user markup
effort, which adjusts the metric-based few-shot learning approach.
For acoustic event detection containing background noise, Kazuki
Shimada [8] et al. explicitly defined background noise as an inde-
pendent class, thus providing a feature space in which event classes
and background noise classes are fully separated.

It can be seen that by adopting different data processing meth-
ods and adding various modules for different problems, prototype
network has a huge advantage in few-shot learning. In order to solve
the problem of insufficient small support set and feature extractor
agnostic to task, a novel mutual learning framework with transduc-
tive learning was introduced to update class prototype and feature
extractor iteratively [9].

In our proposed system, we use SpecAugment as one of data
augmentation methods in few-shot bioacoustic event detection.
Then, we extract PCEN from the bioacoustic audio. Finally, we
train an improved prototypical network and use transductive in-
ference method to overcome the difficulties of few shot problems.
Moreover, we merge the prediction results of improved prototypical
network and transductive inference method according to the length
of sound events for better performance.

The rest of the paper is organized as follows. In section 2, the
dataset and features used in proposed system is described. In sec-
tion3, we interpret the prototypical network and the transductive
inference method. Experiment results are presented in Section 4.
Section 5 concludes our work.

2. DATASET AND FEATURES

2.1. Dataset

The development dataset for task 5 consists of multi-class animal
(mammal and bird) audio files. The development dataset is split into
training and validation sets, and with annotation file provided for
each audio file. Audio recordings are resampled to a sampling rate
of 22050 Hz. We used the Librosa library to generate the acoustic
features. Similar to [7], we automatically construct a set of negative
examples for inference, and adopt the inference-time data augmen-
tation method to generate more positive examples without increas-
ing the cost of manual marking. The query set is comprised of all
audio clips after the fifth annotation. It is noted that we do not use
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the WMW dataset in training set according to the experimental re-
sults.

2.2. Features

In real world audio recording, especially outdoors, there are usu-
ally multiple sources. Recently, per-channel energy normalization
(PCEN) [10] has been proposed as an alter-native to MFCC, which
aims to whiten the background of acoustic recordings and improve
the robustness to channel distortion through temporal integration,
adaptive gain control, and dynamic range compression.

3. METHODS

3.1. Prototypical networks

Meta-learning is often used when solving the problem of few-shot
classification, where only limited example data is provided and the
classifier must generalize the information from the examples to the
given classes. The idea of meta-learning tasks can be summarized
as “learning to learn”, which means the classifier can train itself to
optimize the function for mapping the data into the intended label
with the training tasks. There has been a few methods to achieve
this idea, and prototypical network is a classic paradigm of meta-
learning.

3.1.1. Structure

Prototypical network [11] consists of a feature extractor and a clas-
sifier. The classifier uses the euclidean distance of the features as
the measurement method. This measurement is to describe the sim-
ilarity of the features and distinguish the differences among types.
So, the performance of the network depends on the generalization
ability of the feature extractor. If with a lot of few-shot classifica-
tion tasks being trained, the feature extractor can getting stronger.
Then, when giving a new set of limited data, the network will be
able to recognize new classes by extracting the feature of labeled
data as ’prototype’ and compare the similarity of the prototype with
other features. Our prototypical network is based on ResNet, and
the input feature is the built by PCEN.

3.1.2. SpecAugment

We use SpecAugment [12] as our data augmentation method.
SpecAugment is a simple data augmentation method, and we ap-
ply it on to the feature inputs of the neural network. The augment
policy consists of warping the features, masking time channels and
masking frequency channels. And in our work, we apply time and
frequency masking to our PCEN features, for the time masking is
used in time domain, which is as similar as the frequency masking.
The augmentation policy can improve the robustness of our system,
and makes the system more generalized.

3.1.3. Multiscale feature perception

In order to get more information from the features we get from the
PCEN method, we apply a structure of multiscale perception. We
use different scale in the kernel size of the ResNet block instead
of the invariable kernel size. Therefore, in our training process,
our network can learn better from the limited data and get more
information based on different shape of scales of both time domain

scale and frequency domain. That makes the extractor work better
than only process with one single size of kernel.

3.1.4. Training

The network uses training tasks, here we refer to the few-shot classi-
fication tasks, to obtain the ability to optimize the mapping function
between data and labels. When creating training tasks, we should
manually divide the dataset into support set and query set, treating
the training task as separate dataset. Ideally, the network should
perform well after several epochs of training.

3.2. Transductive inference

Transductive inference (TI) is about reasoning from observed, spe-
cific (training) cases to specific (test) cases. In this paper, the core
idea of TI is about leveraging the statistics of the unlabeled data.
We adapt the idea from [9], which maximizes the mutual informa-
tion (MI) between the query features and their label predictions for a
few-shot task at inference. It means that TI has seen these unlabeled
data before making final prediction.

3.2.1. Large convolution kernel size

We try to use large convolution kernel size of CNN in our model.
We find that it is helpful to improve the performance of TI, which
can increase the model receptive field. In our experiments, we find
that the model with kernel size of 13 has the best performance.

3.2.2. Pretrained Features

PANNs [13] are the pretrained audio neural networks trained on
large-scale AudioSet dataset with 1.9 million audio clips with an on-
tology of 527 sound classes. We use the ’CNN10’ model in PANNs
to extract the pretrained features from the dataset of task 5 and con-
catenate the embedding features with pretrained features. Then, the
combined features are send to a fully connected layer to generate
the predictions.

3.3. Model ensemble

In the validation and evaluation set, we find that the lengths of some
sound events are too long (more than 1s) or too short (less than
50ms). During inference time, we shift the selection window with
200ms in time by 50 ms increments in TI and use the variable win-
dow size that varies based on the event length in positive examples
in baseline model. Moreover, we find that the template matching
baseline system with variable window size got the best preformance
on DC dataset last year which includes some audio longer than 1s.
Therefore, we find TI preform worse than baseline model on those
too long or too short events.

We fuse the prediction results of TI and baseline model accord-
ing to the length of sound events. For the events with average length
shorter than 50ms or longer than 500ms in positive examples, we
use the results of baseline model. For the other events, we use the
results of TI.

4. EXPERIMENTAL RESULTS

In this section, Table 1 shows the results of our systems on the vali-
dation set. We can see that the improved TI preforms better than the
baseline models. The ensemble system that combines the results of
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our baseline prototypical network and improved TI gets the highest
F-score of 64.77%.

Table 1: The results of F-measure score on the validation dataset.

Models P R F
Baseline (prototypical networks) 36.34% 24.96% 29.59%

Our prototypical network 50.97% 32.30% 39.54%
Improved TI 64.43% 71.17% 58.86%

Ensemble of models 64.77% 70.86% 59.64%

5. CONCLUSIONS

In this technical report, we propose using improved prototypical
network and transductive inference method for few-shot bioacoustic
event detection task. We apply data enhancement methods such as
specaugment, extract pretrained features and increase the model re-
ceptive field to improve model performance. At last, we get 64.47%
under F-measure score on the validation set.
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