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ABSTRACT

We present our submission to the DCASE2022 Challenge Task 2,
which aims to promote research in unsupervised anomalous sound
detection under domain shift condition. We propose two architec-
tures to solve this problem, one is a self-supervised model adopting
MobileFaceNets, and the other is one density estimation probability
distribution model based on Masked Autoregressive Flow.

Index Terms— DCASE2022, Anomalous Sound Detection,
Domain Shift, Machine Condition Monitoring, MobileFaceNets,
Masked Autoregressive Flow

1. INTRODUCTION

The DCASE2022 Challenge Task 2 is concerned with identifying
anomalous behavior from a target machine using sound recordings
[1]. The main difference between this task and other DCASE tasks
is that it is unsupervised. Consequently, there are only samples from
the normal-state distributions in the available training data. Another
complicating factor for this challenge is that the acoustic charac-
teristics of the training data and of the test data are different – a
condition known as domain shift and there are some known results
for reducing the performance gap between the training and test data
[2],[3], [4], [5], [6], [7], [8], [9], [10]. Recognizing the potential
of these techniques, our experiments combine their advantages and
hope to achieve better performance.

In our submission, we use two self-supervised classifiers based
on previous work [11], [12], [13], [14]. In the first classi-
fier we adopt dual features of audio waveform and logMel spec-
trum.Meanwhile, different anomaly score calculation methods are
adopted for different types of machines. In the second model, a
classifier is utilized that relies on masked normalizing flows to esti-
mate the conditional density of input logMel spectrum and outputs
are used to produce an anomaly score [15], [16], [17], [18], [19].

In the following sections, we will demonstrate each submission,
how it was trained, its hyperparameters, and their respective results.
To ensure our experiment more convincing, the baseline scores are
showed in Tables 1 and 2. The data used in this challenge is 16
KHz, single-channel audio. For more details, please see [1], [20],
[21].

2. ARCHITECTURES

The first model builds on the work [11]. The input to the model is
the raw waveform and logMel spectrum of the audio. The second

Table 1: Baseline Autoencoder Scores

ToyCar ToyTrain bearing fan gearbox slider valve
h mean auc source 0.9041 0.7632 0.5442 0.7859 0.6893 0.7795 0.5201
h mean auc target 0.3481 0.2335 0.5838 0.4718 0.6264 0.4767 0.4946

h mean pauc 0.5274 0.5048 0.5198 0.5752 0.5849 0.5578 0.5036

Table 2: Baseline MobileNetV2 Scores

ToyCar ToyTrain bearing fan gearbox slider valve
h mean auc source 0.5912 0.5726 0.6058 0.7075 0.6921 0.6515 0.6709
h mean auc target 0.5196 0.4590 0.5994 0.4822 0.5619 0.3823 0.5722

h mean pauc 0.5227 0.5152 0.5714 0.5690 0.5603 0.5467 0.6242

model is based on the well-known Masked Autoregressive Flow
architecture, using Masked Autoencoder for Distribution Estima-
tion(MADE).MADE is an auto-encoder that can capture distribu-
tion density. The overall model input is divided into two parts, one
is the section ID as a conditional input, and the other is the logMel
spectrum of normal audio.

2.1. MobileFaceNets

The architecture of the first model is shown in Figure 1. Further-
more, we adopt different methods to calculate abnormal scores In
order to capture the most obvious features of anomalous audio.

2.1.1. Preprocessing

Since there are only a small number of labeled samples of target do-
main in the provided dataset, we employ a data augmentation algo-
rithm[14]. At the same time, this algorithm can construct the neigh-
borhood value of training samples according to the dataset distribu-
tion through the prior knowledge of the training set, and enhance
the generalization ability of the model.

2.1.2. Training & Results

The methods of calculating anomaly scores are shown in Table 3.
ToyTrain adopts the algorithm of Local Outlier Factor. Several ma-
chine types of Valve, Slider, Bearing and Gearbox are determined
by experiments. The loss measurement method of cosine similarity
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Figure 1: The Overview Architecture Of MobileFaceNets.

Table 3: Methods of Calculating Anomaly Scores

ToyTrain bearing fan gearbox slider valve
anomaly scores LOF COS GMM COS COS COS

is adopted. At the same time, the model introduces two labels of
source domain and target domain for domain judgment. When the
audio point is closer to the source domain, the calculation of cosine
similarity is performed with the center point of the source domain
data. Training. When Fan’s abnormal score is calculated, the GMM
algorithm is used. The training is usually carried out for 30 epochs,
using the training sets in the development and evaluation datasets,
and finally calculating the audio embedding and in order to measure
the audio from different angles. Loss, we use ArcFace loss during
training. Embedding is used to calculate cosine similarity during
testing. Table 3 shows our experimental results, which can be seen
to be much improved than the baseline indicators.

Table 4: MobileFaceNets Scoring Results

ToyCar ToyTrain bearing fan gearbox slider valve
h mean auc source 0.6659 0.5650 0.6628 0.6386 0.7951 0.9331 0.8456
h mean auc target 0.5610 0.4714 0.7034 0.5880 0.7394 0.8324 0.8337

h mean pauc 0.5258 0.5137 0.5665 0.5672 0.5961 0.7378 0.7011

2.2. MASKED AUTOREGRESSIVE FLOW

The second model architecture we submitted is shown in the fig-
ure, the model is a classifier that classifies sections with conditional
input.

Figure 2: The Architecture Of Masked Autogressive Flow.

2.2.1. Preprocessing

Since there are only a small number of labeled target domain sam-
ples in the dataset, we employ a data augmentation algorithm of
mixup [ref]. At the same time, this algorithm can construct the
neighborhood value of training samples on the distribution of the
training set through the prior knowledge of the training set, and en-
hance the generalization ability of the model.

The model did not use any special preprocessing or augmenta-
tion. Logarithmic analyses were performed on both STFT and Mel
spectra. All spectrograms are calculated with frequency min and
max set to 100 Hz and 8000 Hz, respectively.

Table 5: MAF Scoring Results

ToyCar ToyTrain bearing fan gearbox slider valve
h mean auc source 0.8936 0.7512 0.6628 0.7487 0.7951 0.9331 0.8456
h mean auc target 0.6761 0.4968 0.7034 0.6780 0.7394 0.8324 0.8337

h mean pauc 0.5666 0.5465 0.5665 0.5811 0.5961 0.7378 0.7011

2.2.2. Training & Results

The abnormal score calculation method of each type in the training
process is shown in Table 3. ToyTrain adopts the algorithm of Lo-
cal Outlier Factor. Several machine types of Valve, Slider, Bearing
and Gearbox are determined by experiments. The loss measure-
ment method of cosine similarity is adopted. At the same time, the
model introduces two labels of source domain and target domain
for domain judgment. When the audio point is closer to the source
domain, the calculation of cosine similarity is performed with the
center point of the source domain data. Training. When Fan’s ab-
normal score is calculated, the GMM algorithm is used. The train-
ing is usually carried out for 30 epochs, using the training sets in the
dev and eva data sets, and finally calculating the audio embedding,
and in order to measure the audio from different angles. Loss, we
use ArcFace loss during training. Embedding is used to calculate
cosine similarity during testing. Table 3 shows our experimental
results, which can be seen to be much improved than the baseline
indicators.
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3. CONCLUSIONS

We have elaborated on our submission to the DCASE2022 chal-
lenge Task 2, the notable difficulty of which is the domain shift be-
tween the training and testing datasets. We find that domain adap-
tative methods that perform well in other modalities (especially vi-
sual) do not seem to work well with audio (at least in our experi-
ments). This difference brings a greater need for adaptation meth-
ods in the audio domain to the DCASE2022 Challenge. Develop
more audio domain adaptative techniques to solve domain shift has
become a problem to be solved.

In the model we developed, we found that using Masked Au-
togressive Flow has some benefit for domain generalization as it is
unsupervised and captures the distribution inside the audio. In a
real-world setting, it is very difficult for us to collect more data on
the target domain. It is even more impossible to obtain anomalous
audio, so it is crucial to be able to use Masked Autogressive Flow to
predict the distribution inside normal data. Going forward, we plan
to work with more variants of Masked Autogressive Flow.
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