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ABSTRACT
This technical report describes our team’s submission to DCASE
2022 Task 2. In this report, we propose a robust training frame-
work for anomalous sound detection, which includes feature pre-
processing, model pretraining, joint loss, and anomaly score se-
lection. The experimental results show that our anomalous sound
detection model outperforms the official model, with an average
performance improvement of 22.08% based on the official scoring
method.

Index Terms— Anomalous sound detection, feature prepro-
cessing, robust detection

1. INTRODUCTION

In this task, the purpose of anomalous sound detection is to detect
whether the sound emitted from the target machine type is abnor-
mal. The issue is that there are no anomalous sound samples, and
therefore, a binary classifier cannot be directly trained to determine
whether it is anomalous. This task is often regarded as an unsuper-
vised one. The basic idea is we need to learn the inherent properties
of normal samples through normal sound samples. The common
method is to train a classifier according to different machine types
as auxiliary tasks [1, 2]. This is based on a realistic assumption
that there are often more than one machine of the same kind in the
factory. There are often some differences in the sounds emitted by
different machine IDs. A classifier can be built to distinguish ma-
chine IDs. In the test phase, the probability confidence is used as
the anomaly score, and the probability is passed through a manually
set function to make a larger probability output a smaller anomaly
score.

This approach worked well in last year’s competition [3], but it
did not perform well for certain machine types. Note that it is very
easy to directly train a classifier to distinguish between different IDs
of the same machine type using a neural network, which means that
the model is often overfitted. To address this issue, we propose a
robust anomalous sound detection framework. First, we use all ma-
chine types to train a classifier that can simultaneously distinguish
different machine types with different IDs. Next, we fine-tune the
model parameters to train a dedicated classifier for each machine
type. In the testing phase, negative log-likelihood, Mahalanobis dis-
tance, and cosine similarity are optional as outlier scores.

Table 1: Model architecture, where k is the number of section IDs,
t indicates the expansion factor, c is the output channels, n denotes
the number of Inverted residuals blocks, and s is the stride. The first
layer of each sequence has a stride s and others use stride 1.

Operator t c n s
Conv2d 3x3 - 64 - 2
Conv2d 3x3 - 64 - 1
Blockneck 2 128 2 2
Blockneck 4 128 2 2
Blockneck 4 128 2 2

Conv2d 1x1 - 512 - 1
Linear GDConv2d - 512 - 1
Linear Conv2d 1x1 - 128 - 1

Dropout - - - -
Linear - k - -

2. PROPOSED METHOD

2.1. Model

During experiments, we found that using classic models in the im-
age classification domain such as Inception [4] and Xception [5],
did not actually improve detection performance. In this work, we
train our anomalous sound detection model based on mobileface-
nent [6] with our modifications to better fit this task, including re-
ducing the depth and adding a linear branch in bottleneck that does
not use any activation function. The model structure is provided in
Table 1.

2.2. Anomaly score

The calculation of anomaly scores is very important. We found that
the results obtained by using different calculation anomaly scores
for the same model are often very different. This indicates that the
model might be good enough, but we only need to select appropriate
anomaly scores for different machine types.

In addition to the calculation of anomaly scores according
to the model output probability proposed by Baseline. We also
choose Mahalanobis distance [7] and cosine similarity as options
for anomaly scores.
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Table 2: Experiment configurations, where m represents Mahalanobis distance, p represents probability confidence.

ToyCar ToyTrain Bearing Fan Gearbox Slider Valve

w/o Centerloss True True True False True False False

Anomaly score m m p p m p m

Highpass filter True True False False True False True

Table 3: Anomaly detection results for different machine types.

Method Baseline AE Baseline MobV2 Ours

ToyCar

AUC(source) 90.41% 58.92% 86.14%

AUC(target) 34.81% 51.95% 72.63%

pAUC 52.74% 52.36% 62.07%

ToyTrain

AUC(source) 76.32% 57.57% 82.44%

AUC(target) 23.35% 45.79% 68.23%

pAUC 50.48% 51.52% 64.91%

Bearing

AUC(source) 54.42% 60.55% 74.87%

AUC(target) 58.38% 60.09% 87.45%

pAUC 51.98% 56.96% 69.72%

Fan

AUC(source) 78.59% 70.75% 75.00%

AUC(target) 47.18% 48.22% 66.60%

pAUC 57.52% 56.94% 67.00%

Gearbox

AUC(source) 68.93% 69.19% 87.36%

AUC(target) 62.64% 56.23% 91.35%

pAUC 58.49% 56.07% 75.60%

Slider

AUC(source) 77.95% 65.05% 93.34%

AUC(target) 47.67% 38.40% 86.11%

pAUC 55.78% 54.73% 80.36%

Valve

AUC(source) 52.01% 67.66% 92.46%

AUC(target) 49.46% 57.75% 96.78%

pAUC 50.36% 62.64% 88.56%

All Harmonic mean 52.61% 56.01% 78.09%

On the public test set, we will calculate all anomaly scores, and
choose the most appropriate anomaly scores for different machine
types.

2.3. Domain generalization

Since the target domain of each machine ID has only 10 samples,
we did not use common domain generalization methods. We saved
the average embeddings of the source and target domains of each
machine ID during the training process, and the computation of the
covariance matrix used all the ID’s embeddings without distinguish-
ing the source and target domains. When calculating the Maha-
lanobis distance, since we do not know if the audio belongs to the
source domain or the target domain, we calculate the Mahalanobis
distance between the embedding and the average embedding of the
source and target domains, and then take the minimum value as the
distance.

2.4. Audio preprocessing

Observing the spectrum, it is found that the features of some ma-
chine types are mainly concentrated in high frequencies. In light
of this finding, we pass the features through a high-pass filter be-
fore passing through the Mel filter. For some machine types, ex-
periments show that preprocessed features are more suitable for
anomaly detection.

2.5. Model ensemble

The classifier is only an auxiliary task for anomaly detection. After
training several epochs, we observed that the accuracy of the veri-
fication set is as high as 99%, but the detection performance is not
completely positively correlated with the accuracy. In order to ob-
tain a robust anomaly detection model, we saved the parameters of
each model during the training process. According to the AUC per-
formance of the model on the test set, we average several best epoch
model parameters, and finally save the average embedding and co-
variance matrix of each machine ID to calculate the Mahalanobis
distance and cosine distance.

3. EXPERIMENTS

3.1. Dataset and audio processing

All experiments are based on the DCASE 2022 task 2 dataset
[8, 9, 10], which includes 7 machine types. The log Mel spec-
trum is used as the input feature. To compute STFTs and Mel-
spectrograms, we use 1024 window size and 512 hop size. The
number of Mel-frequency bins is 128. After this, we obtain a
128x313 input feature, where 313 is the time frame. According
to the Baseline suggestions, we further divide the features to fit the
model.
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3.2. Experimental settings

We use pytorch for experiments. In training, the model is trained
for 50 epochs with Adam as the optimizer, where the batch size is
128 and the learning rate is 0.001. In the fine-tuning phase, the only
difference is that the batch size is 64.

The total training data set includes 7 machine types, and each
machine type has 6 machine IDs. Since each machine ID has only
1000 training samples, it is convenient to directly train a dedicated
classifier for each machine type. The embedding extracted by the
model is not necessarily valid. Therefore, we first divide the data
into 42 categories, and use cross entropy (CE) loss to train a classi-
fier. After the training is completed, we fine-tune a model for each
machine type separately. In the second stage, in addition to CE
loss, we also use centerloss. In Table 2, we summarize the detailed
experimental setup.

4. RESULTS AND DISCUSSIONS

We evaluate the detection performance using the area under the re-
ceiver operating characteristic curve (AUC) and the partial AUC
(pAUC) with p = 0.1. Table 3 shows our experimental results. Com-
pared with the baseline, our anomalous sound detection model sig-
nificantly improves the detection performance. It is worth noting
that result presented here did not use model ensemble. After the
ensemble, the performance is slightly improved or decreased de-
pending on the machine type, but our submissions are all based on
ensemble, because the effect of the public test set does not fully
represent the effect on the final blind test set.
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