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ABSTRACT

This technical report describes our system for Task 1 (Low-
Complexity Acoustic Scene Classification) of the DCASE2022
Challenge. Due to the limited allowed complexity of the model
to submit, we use a teacher-student approach. The teacher is a Re-
ceptive Field (RF) regularized CNN model and the student is a sim-
pler 5-layer CNN with batch normalization, dropout and maxpool
layers. In addition, some data augmentation techniques, such as
adding gaussian noise, shifting, pitch shifting and time stretching
are adopted for expanding the diversity of the dataset. Our system
achieves an accuracy of 53.4% and a multiclass cross-entropy (log
loss) of 1.279 on the development dataset. The student model has
21,930 parameters and a Multiply accumulate count of 9.775 mil-
lion.

Index Terms— Acoustic scene classification, convolutional
neural networks, low-complexity, teacher-student architecture

1. INTRODUCTION

Detection and Classification of Acoustic Scenes and Events
(DCASE) [1] is an annual challenge, attracting attention to the field
of machine learning and encouraging research. Task 1 of the chal-
lenge was Low Complexity Acoustic Scene classification (ASC)
which can be described as a multi-class supervised classification
problem. The goal of this task is to recognize a set of given environ-
ment classes (e.g., airport, urban park or metro station) from sound
recordings. The sample recordings were all 1 second in length and
they were collected from 10 different audio scenes from 12 Eu-
ropean cities, using four different real and 11 simulated devices
[2]. Variants of convolutional neural networks (CNNs) were the top
ranking architectures in the previous year’s DCASE challenge. Re-
ceptive Field (RF) regularized CNNs turned out to be particularly
successful (cf. [3] [4] [5]). Moreover, over-parameterized Neural
Networks showed better generalization [5] [6] behavior. Submis-
sions for this year’s challenge have two computational complex-
ity constraints: The number of parameters, which must not exceed
128K and the maximum number of multiply-accumulate instruc-
tions (MACs) per inference, which must not exceed 30 MMAC
(Million MACs). The complexity constraints for the challenge
make it a perfect candidate for a Teacher-Student CNN approach.
This uses two types of classifiers: the first being a large over-
parameterized model (teacher) and the second being a much smaller
model (student), that adheres to the complexity constraints [7].

2. DATA PROCESSING

2.1. Audio processing

After briefly experimenting with MFCCs, we soon realized that
many of last years participants of the challenge used mel-
spectrograms for the network input since they contain more infor-
mation, and can therefore increase the performance of simple CNNs
greatly. The input is down-sampled to 22.05 kHz. We used a Short
Time Fourier Transform (STFT) with a window size of 2048 and
25% overlap to extract the input features. We then weigh the fre-
quencies in the resulting spectrograms perceptually using the A-
weighting curve and apply a Mel-scaled filter bank in a similar fash-
ion to Dorfer et al. [8].

While investigating the hyperparameters for creating the mel-
spectrograms we noticed that using 256 Mel frequency bins to cre-
ate the networks’ inputs as opposed to 128 Mel frequency bins en-
ables the networks to detect more useful information.

2.2. Data augmentation

To have more data to train the networks with, and to make our
networks generalize better, we augment our whole training dataset
once. We experimented with different augmentation techniques and
found it most useful to randomly choose from four different aug-
mentations. We add Gaussian noise to the training samples, to help
the network learn to be able to classify samples which have some
noise themselves. Time stretching, pitch shifting and time shifting
helps the network to be more robust in three different ways. The
augmentations are applied sequentially in the order stated above
with a probability of 0.25 per method.

Figure 1: Original vs augmented spectrogram
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3. ARCHITECTURES

Both the teacher and the student model are fully convolutional neu-
ral networks with an Adaptive Average Pooling at the very end of
the network to get an output vector of size ten. In both networks,
batch-normalization is applied after each convolutional layer.

3.1. Teacher model

We use a modified version of the damped CNN proposed in [5]
as our bigger network. A damped CNN regulates the influence an
input has on a convolutional neuron, based on its position in the
neuron’s receptive field which means that the further the input is
from the center the less influence it will have.

The model consists of 5 stages. A stage can be described as
multiple layers or blocks. The input and output stage each contain
one convolutional layer while each of the three stages in the middle
contains four blocks. As illustrated in Figure 2, a block encom-
passes two sequential pairs of a convolutional layer and a batch-
normalization layer.

Teacher network architecture
Stages Blocks/Layers C K O

Stage 1
input 1 - 44 x 256

Conv2dDamped 128 5 21 x 127
BatchNorm2d 128 - -

Stage 2

block21 128 3 / 1 21 x 127
maxpool 128 2 x 2 10 x 63
block22 128 3 / 3 10 x 63
block23 128 3 / 3 10 x 63
block24 128 3 / 3 10 x 63

Stage 3

skip block31 256 3 / 1 10 x 63
block32 256 1 / 1 10 x 63
block33 256 1 / 1 10 x 63
block34 256 1 / 1 10 x 63

Stage 4

skip block41 512 1 / 1 10 x 63
block42 512 1 / 1 10 x 63
block43 512 1 / 1 10 x 63
block43 512 1 / 1 10 x 63

Stage 5
Conv2dDamped 10 1 10 x 63
BatchNorm2d 10 - 10 x 63

AdaptiveAvgPool2d 10 - 1 x 1

Table 1: Description of the architecture of the teacher network
where a skip block is a block with the convolutional skip connection
and dropout layer with dropout probability of p = 0.1.
C = number of channels; K = kernel size of either a maxpooling or
convolutional layer or the kernel sizes of the first and second con-
volutional layer of a block; O = output shape

As described in Table 1, the first blocks of the third and fourth
stage consist of an additional convolutional layer as skip connection
and a Spatial-Dropout layer with dropout probability of p = 0.1.
Our experiments showed that Spatial-Dropout helps the model to
generalize better, and reduces the variance of validation loss.

While the skip connections have a kernel size of 1 the kernel
sizes of the convolutional layers in the different blocks differ and are
displayed in Table 1. The number of channels doubles from the first
to the second and from the second to the third middle stage, start-
ing with 128 channels. Furthermore, we use the ELU [9] activation
function to train the teacher network with 3,956,628 parameters and

Figure 2: An illustration of the internal structure of a block con-
tained in the teacher network.

2,822.779 MMACs in total. The ELU nonlinearity not only outper-
formed other activation functions like ReLU [10] or Leaky ReLU
[11] but additionally ensures a more stable training.

Investigations with different sizes of the receptive field showed
that the network performs best on the validation set with ρ = 7,
which corresponds to 44 x 67 pixels. This results in a receptive
field big enough to contain a lot of information and small enough to
only contain the most relevant information.

3.2. Student model

Since results of the past years showed that using multiple networks
for the final prediction can be very helpful, we implemented one
student network architecture which has just below one third of the
allowed complexity (21,930 parameters / 9.775 MMACs). The stu-
dent model consists of two middle stages with one block each, the
output layer uses 2-dimensional adaptive average pooling in a sim-
ilar manner as the teacher network.

A block in the student network equals the architecture of a block
in the teacher network without the optional Dropout or shortcut-
layers. Additionally, due to the requirement to quantize the student
models we used conventional convolutional layers instead of the
damped version. In total, the student network has 5 convolutional
layers and 2 max-pooling layers. To reduce the complexity of the
model further, we use only 32 channels throughout the model.
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Student network architecture
Stages Blocks/Layers C K O P

Stage 1
input 1 - 44 x 256 -

Conv2d 32 5 x 6 21 x 127 960
BatchNorm2d 32 - - 64

Stage 2

maxpool 32 2 x 2 10 x 63 -
block21 :
Conv2d 32 3 x 3 10 x 63 9216

BatchNorm2d 32 - - 64
Conv2d 32 1 x 1 10 x 63 1024

BatchNorm2d 32 - - 64
maxpool 32 2 x 5 5 x 12 -

Stage 3

block31

Conv2d 32 3 x 3 5 x 12 9216
BatchNorm2d 32 - - 64

Conv2d 32 1 x 1 5 x 12 1024
BatchNorm2d 32 - - 64

Stage 5
Conv2d 10 1 x 1 - -

BatchNorm2d 10 - - -
A. AvgPool2d 10 - - -

Table 2: Description of the architecture of the student network.
C = number of channels, K = kernel sizes, O = output shape,
P = number of parameters

3.3. Training

We used the Adam optimizer and a mini-batch size of 22 for the
training process of both neural networks. This number enabled an
easier tuning of the learning rate scheduler. The teacher and the
student network get trained for 25 and 51 or 100 epochs respec-
tively. Training the student model with 51 epochs ensures that we
do not overfit to the training data. To improve generalization and
robustness we used the Mixup approach [12] with a Beta distribu-
tion parameter of 0.3. As stated above, we use an ensemble of three
instances of the same student network architecture to produce the fi-
nal predictions. By averaging the logits of multiple smaller models
our system generalizes better than one single large network.

3.3.1. Weight initialization

As weight initialization for the first convolutional layer of a block
we take the He-initialization [13] rescaled by a Fixup multiplier
[14]. This multiplier equals

1√
i

(1)

where i stands for the block index. For the second convolutional
layer of a block we set the weights to zero and for the optional
convolutional skip connection we use the original He-initialization.

3.3.2. Distilling the knowledge in a Neural Network

Inspired by the approach in [15], we train our smaller neural net-
work by using soft targets as labels. The soft targets are calculated
by using the logits of the bigger model and an additional temper-
ature parameter T = 5. More precisely, instead of the standard
softmax function

qi =
exp zi∑
j exp zj

(2)

we use a modified version where we divide each input to the
softmax function by the temperature such that we get

qi =
exp zi

T∑
j exp

zj
T

(3)

where qi is the probability for class i, zi is the logit and T rep-
resents the temperature.

The total loss of the student model consists of the soft target
loss and the true label loss, with weights of 20 and 1 respectively.
Even though we weigh the true label loss relatively small, the per-
formance would suffer if we would not include it in the loss at all.

3.3.3. Learning Rate Scheduler

We monitored the validation loss and adapted the learning rate
schedulers such that the loss curve stays as flat as possible.
For training the teacher model, we therefore implemented a lin-
ear learning rate scheduler with multiple phases. For the first three
epochs we train our network with learning rates of 1e-4, 9e-5 and
5e-5. After we train our network for four epochs with the same
learning rate, we decrease it in the next four epochs linearly to 1e-5
before we descend it linearly to 2e-6 for the next eleven epochs. For
the final six epochs our learning rate stays the same.

Figure 3: Learning rate schedulers of the teacher network.

Figure 4: Learning rate schedulers of the student network.

We used simpler settings for the learning rate scheduler of the
student models. After the learning rate descends linearly from 8e-
5 to 5e-5 in the first 10 epochs, it decreases to 8e-6 for the next
80 epochs before the network is trained with this learning rate for
another 10 epochs. In case we train the network only for 51 epochs,
we use the exact same learning rate scheduler.
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4. RESULTS

Our four submissions consist of one model trained just on the train-
ing set for 100 epochs and three models trained on the whole de-
velopment set for 51 epochs. All of our submitted predictions were
created using the average logits of three student networks. For one
submission we used a dropout probability of 0.4 instead of 0.3. We
got our forth predictions by training the teacher model with a batch
normalization layer at the beginning of the network. In Table 3
below is a short overview of all the settings which differ in our sub-
missions.

Settings model 1 model 2 model 3 model 4

Epochs 51 100 51 51

Dropout p 0.3 0.3 0.3 0.4

BN at the
beginning False False True False

Trained on the
whole

development set
True False True True

Table 3: Settings of the different submitted student models ranked
by lowest validation loss when trained on the training set.

Scenes
model 1 model 2

Log loss Accuracy Log loss Accuracy

Airport 1.3 37.9 % 1.205 42.7 %

Bus 0.983 56.3 % 1.116 50.0 %

Metro 1.272 42.9 % 1.21 43.2 %

Metro
Station 1.388 41.7 % 1.337 42.5 %

Park 0.575 73.1 % 0.607 74.4 %

Public
Square 1.59 26.8 % 1.506 28.8 %

Shopping
Mall 0.928 57.8 % 1.05 52.5 %

Street
Pedestrian 1.66 24.1 % 1.502 30.7 %

Street
Traffic 0.623 72.2 % 0.722 69.1 %

Tram 1.236 48.3 % 1.236 48.7 %

Table 4: The performance on the validation set by class of the two
best performing models.

As clearly visible in Table 4 our networks perform much better
in some acoustic scenes than in others. Since the results of the base-
line network show a very similar unevenness of the performance on
the different scenes we can conclude that scenes like public square
or street pedestrian are harder to detect for convolutional neural net-
works than ones like street traffic and park.

Devices
model 1 model 2

Log loss Accuracy Log loss Accuracy

A 0.888 59.9 % 0.877 60.6 %

B 1.207 48.6 % 1.222 47.2 %

C 1.097 52.4 % 1.119 51.5 %

S1 1.188 47.5 % 1.193 47.0 %

S2 1.214 47.9 % 1.223 50.2 %

S3 1.124 52.3 % 1.094 54.1 %

S4 1.313 46.7 % 1.341 45.3 %

S5 1.238 45.6 % 1.251 44.8 %

S6 1.343 42.2 % 1.357 43.1 %

Table 5: The performance on the validation set by device of the two
best performing models.

The relatively low log loss on samples recorded on the device
A which can be seen in Table 5 can be explained due to the fact that
almost three fourths of the data of the training split are recordings
from said device.

5. CONCLUSION

In this work, we described our data processing, data augmenta-
tion, network architectures, training of those networks and, finally,
the results. We tested many different configurations of the mel-
spectrograms. We experimented with many different network archi-
tectures and hyperparameters, ending up with an oversized teacher
network and a relatively small student network architecture small
enough to be allowed to use three instances of them.
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