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ABSTRACT

While many deep learning methods on other domains have been
applied to sound event detection (SED), differences between orig-
inal domains of the methods and SED have not been appropriately
considered so far. As SED uses audio data with two dimensions
(time and frequency) for input, thorough comprehension on these
two dimensions is essential for application of methods from other
domains on SED. Previous works proved that methods those ad-
dress on frequency dimension are especially powerful in SED. By
applying FilterAugment and frequency dynamic convolution those
are frequency dependent methods proposed to enhance SED perfor-
mance, our submitted models achieved best PSDS1 of 0.4704 and
best PSDS2 of 0.8224.

Index Terms— Sound Event Detection, FilterAugment, Fre-
quency Dynamic Convolution

1. INTRODUCTION

Sound event detection (SED) which aims to classify desired sound
event classes and their time localization (onset and offset) in a given
audio signal has been rapidly growing with advancement of deep
learning (DL) methods [1, 2, 3, 4, 5, 6, 7]. As 1D audio data with
time dimension is usually expanded into 2D data with time and fre-
quency dimension for audio signal processing, 2D time-frequency
audio data are usually used for DL based SED by treating 2D au-
dio data as 2D image data and applying DL methods for image data
[6, 7, 8]. Although DL methods for 2D image data showed power-
ful performance on their own domain, they have inherent inconsis-
tency on SED which arises from the difference between 2D image
data and 2D audio data. While 2D image data consists of two same
dimensions representing the same physical quantity (location), 2D
audio data consists of two different dimensions representing differ-
ent physical quantity (time and frequency). Considering that time is
somewhat similar to location as they both are translation equivariant
(certain pattern is still the same entity when it is moved along loca-
tion or time dimensions) while frequency is not translation equivari-
ant because each frequency value represents different characteristics
from the others, frequency is the dimension to be thoroughly con-
sidered in SED [6, 7]. In this work, we especially apply methods
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that address such difference between 2D image data and 2D audio
data for SED by addressing issues of frequency dimension in 2D
audio data. SED models illustrated in this report could be trained
using code available in GitHub1. This repository includes both Fil-
terAugment and frequency dynamic convolution.

2. METHODS

2.1. FilterAugment

FilterAugment is proposed to generalize SED model to various
acoustic environments, to make SED model more like human who
can classify sound events from different acoustic environments
[6]. By randomly dividing frequency ranges into several frequency
bands and randomly applying weights on the frequency bands of
a Mel spectrogram, FilterAugment could approximately simulate
acoustic environments that results in different frequency weights
on different frequency bands. Although resulting Mel spectrogram
might sound unnatural, it is simple to use and effective on SED as
shown in [6]. FilterAugment could emphasize different frequency
bands of the same data every epoch, thus it helps to train SED model
to recognize time-frequency patterns from wider frequency ranges.
Without FilterAugment, SED model might be trained to recognize
patterns from most distinct time-frequency patterns instead. Code
for SED with FilterAugment is available in GitHub2.

There are two types of FilterAugment: step and linear type.
Step type FilterAugment applies constant weights over each fre-
quency bands and the weights change abruptly across the boundary
of frequency bands, while linear type FilterAugment applies con-
tinuous weights over frequency bands by assigning weights on fre-
quency boundaries and then linearly interpolating weights between
the boundaries. In this work, these different types of FilterAugment
ensemble averaged to increase variety of SED model capacity thus
enhance performance of ensemble aveaged model.

Hyperparameter setting used in this work is as follows: step
type FilterAugment with dB range = (-4.5, 6), band number range =
(2, 5) and minimum bandwidth = 4, linear type FilterAugment with
dB range = (-6, 4.5), band number range = (3, 6) and minimum
bandwidth = 7.

1https://github.com/frednam93/FDY-SED
2https://github.com/frednam93/FilterAugSED
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Table 1: Training settings with their best PSDS1, PSDS2 scores and collar-based F1 score.
Setting Index Seed FilterAugment Type Attention Dimension PSDS1 PSDS2 CB-F1
1 21 step class 0.4446 0.6780 0.536
2 42 step class 0.4554 0.6719 0.536
3 42 linear class 0.4510 0.6702 0.536
4 42 step time 0.4548 0.6743 0.533

2.2. Frequency Dynamic Convolution

Frequency dynamic convolution is proposed to weaken translation
equivariance of 2D CNN on frequency axis and to improve CNN
kernel’s adaptability to the input at the same time [7]. It is inspired
by temporal dynamic models that applied dynamic convolution pro-
posed for image recognition into speaker verification [9, 10, 11]. As
different frequency regions exhibit different frequency patterns of
sound events, different convolution kernels should be used on dif-
ferent frequency regions. Thus, frequency dynamic convolution ap-
plies convolution kernel that dynamically adapts to each frequency
bin of the convolution input. By applying adaptive kernels that dif-
fers on each frequency bin, translation equivariance is weakened in
frequency dynamic convolution and it helps recognizing more com-
plex time-frequency pattern for SED as shown in analysis of class-
wise comparison [7]. In this work, 4 basis kernels and temperature
of 45 are used for frequency dynamic convolution.

2.3. Implementation Details

The code used to train SED model submitted for this participation
could be found in Github repository mentioned in introduction. It is
derived from DCASE 2021 Challenge Task 4 baseline [2, 3]. Input
audio data with length of 10 seconds and sampling rate of 16 kHz
are used. They are converted to log Mel spectrogram with num-
ber of FFT, hop length and number of Mel bins as 2048, 256 and
128 respectively. Each batch of log Mel spectrograms are normal-
ized to be between 0 and 1 on batch and time dimensions. For data
augmentation, frame shift, mixup [12], time masking [13] and Fil-
terAugment [6] are used. To utilize unlabeled dataset, mean teacher
method is used [14].

The model has CRNN architecture composed of 7 CNN layers
and 2 BiGRU layers, then frame-wise fully connected (FC) layer
makes strong prediction of the input [15]. Each CNN layer is com-
posed of convolution module, batch normalization, context gating,
dropout, and then 2D average pooling. The first CNN layer uses
normal 2D convolution and the rest six CNN layers use frequency
dynamic convolution [7]. After 2 biGRU layers, frame-wise FC
layer outputs strong prediction while other FC layer followed by
Softmax extracts attention weights to apply on strong prediction to
result in weak prediction. On the output, weak prediction masking
or weak SED [5] is applied and then applied by median filter. Dif-
ferent length of median filter is applied on each sound event class:
5 for alarm/bell ringing, cat, dish, dog and speech and 11, 67, 61,
49, 17 for blender, electric shaver/toothbrush, frying, running water
and vacuum cleaner respectively.

Evaluation metrics used in this report are polyphonic sound
detection score (PSDS) [16] and macro event-based F1 score [4].
PSDS1 and PSDS2 are the metrics used in DCASE 2022 challenge
Task4 [3], which favors SED system that predicts accurate times-
tamp and SED system that does not produce cross triggers respec-
tively.

Table 2: Performance of submissions with number of models en-
semble averaged.

Submit Index # Models PSDS1 PSDS2 CB-F1
1 31 0.4704 0.6866 0.543
2 12 0.4703 0.7002 0.541
3 53 0.0606 0.8224 0.199
4 150 0.0584 0.8195 0.536

2.4. Ensemble Averaging

Table 1 shows four settings used in this work with their best PSDS
scores and collar-based F1 score (CB-F1) of single SED model in
each setting. For each setting, 48 training runs are separately done
resulting in 96 models (48 student models and 48 teacher models).
The settings differ by seed, FilterAugment type, and attention type
for weak prediction pooling. The seed is used are 21 and 42. Filter-
Augment types used are step and linear as illustrated in 2.1. Atten-
tion types are class and time, which means the dimension on which
Softmax applied to obtain attention weights. Using different set-
tings resulted in more diverse SED models thus resulted in better
ensemble averaged models.

3. RESULTS

Table 2 shows performance of submitted models which are ensem-
ble averaged model of 4 settings in Table 1. We chose best 31 stu-
dent and teacher models on PSDS1 for submission 1, best 12 stu-
dent models on PSDS1 for submission 2, best 53 student models on
PSDS2 for submission 3 and best 150 student and teacher models
on PSDS2 for submission 4. For submission 1 and 2, weak predic-
tion masking is applied and for submission 3 and 4, weak SED is
applied [5]. As a result, the best PSDS1 score is .0.4704 and the
best PSDS2 score is 0.8224.
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