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ABSTRACT

Sound event localization and detection (SELD) is a task that com-
bines sound event detection (SED) and direction-of-arrival(DOA)
estimation (DOAE). This year’s SELD task focuses on evaluation
on real spatial scene, raising the difficulty for two reasons: 1) in-
crease in overlapped events 2) noise-like events combined with real
noises. In order to overcome this, we applied source separation and
improved data synthesis logic to our basic (DCMA-SELD) model
that utilizes dual cross-modal attention (DCMA) and soft param-
eter sharing of SED and DOAE streams to simultaneously detect
and localize sound events. In order to improve the SELD perfor-
mance of male/female speech that accounts for a large portion of
input sounds, the source separation in our method was performed
to separate speech signals from other sounds. Regarding the data
synthesis logic, sound events that occur in real life may have some
regularity, such as a laugh event that occurs in people’s conversa-
tions or background music that has a long duration. Instead of data
synthesis by mixing random sound events at random times, there-
fore, we added several rules to simulate more natural data that can
learn the context of the events. Experimental results on validation
data showed that our proposed approach successfully improved the
performance of the task focusing on real spatial scene.

Index Terms— DCASE2022 Task3, sound event localization
and detection, source separation, dual cross-modal attention, data
augmentation, data synthesis

1. INTRODUCTION

Sound event localization and detection (SELD) is a challeng-
ing task that simultaneously requires estimation of direction-of-
arrival(DOA) and detection and classification of sound event types
(SED). With advances of deep learning on acoustic analysis field,
complex acoustic tasks that even human auditory system cannot
perform perfectly, such as SELD and source separation, has been
recently considered. Cakir et al. [1] presented an approach for
SED that utilized convolutional neural networks (CNNs) to extract
acoustic features in a variety of environments, and recurrent neural
networks (RNNs) to analyze long-term temporal features. On the
other hand, DOA has been estimated by either approaches based on
signal processing like maximum likelihood estimation [2] or deep
learning [3]. Also, in the DCASE2020 challenge, Cao et al. [4]

Figure 1: SELD with source separation.

proposed a two-level network named event independent network V2
(EINV2) that achieved SELD based on track-wise estimation.

Since 2019 when the SELD task first started in the DCASE
challenge, various approaches have been proposed, such as ensem-
ble of many models [5], feature adaptation named SALSA [6], net-
work scaling approach using neural architecture search (NAS) [7],
and cross-modal attention with parameter sharing [8].

This year’s SELD task especially focuses on the real spatial
sound scene, while past challenges used synthesized data for both
training and evaluation. The primary difference due to real data
evaluation is more overlapped events. Even though synthesized data
can be controlled strictly while composing noise and events, real
data have inevitably much complicated event structure, which has
up to five overlapping events. Also, real data have real environmen-
tal noises and event sequences that have different properties from
synthesized data. Real data may have various types of distortions in
the noises due to echo noise, room characteristic reverberation, and
device noise. Also, real data have eventual contexts as these data
are usually made with a scenario to give more plausible contexts to
the data, such as most of laughing and clapping that occur between
male or female speech.

In order to address more overlapped events, we apply a source
separation network to separate male/female speech that accounts
for a large portion of input sounds before SELD as shown in Fig. 1.
There have been similar attempts to adopt source separation to sepa-
rately interpret overlapped sound events in the DCASE2020 Task4,
“sound event detection and separation in domestic environments”
[9]. We try to apply a similar approach to the SELD task to sepa-
rate human speech from other events. Regarding the data synthesis
logic, sound events that occur in real life may have some regularity,
such as a laugh event that occurs in people’s conversations or back-
ground music that has a long duration. Instead of data synthesis by
mixing random sound events at random times, therefore, we added
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Figure 2: Overall system architecture of our proposed method.

several rules to simulate more natural data that can learn the context
of the events.

2. DATABASES

The Sony-TAU realistic spatial soundscapes 2022 (STARSS-22)
database [10] is provided as a DCASE2022 Task3 dataset. The data
was collected in real spatial sound scenes, and the fold3 and fold4
are used as training and validation, respectively. However, due to its
limited quantity, synthesized data, the DCASE 2022 simulated data
for baseline training, were provided from the TAU spatial room im-
pulse response database (TAU-SRIR DB). These databases are all
in a sampling rate of 24 kHz and provide four-channel microphone
raw data and FOA-format data. In this paper, we only used the
FOA-format data as an input.

Two major differences of the DCASE2022 Task3 from the
DCASE2021 Task3 are that the data are recorded in real spatial
sound scene and have 13 different SED target classes, increasing
by one event class from last year. Furthermore, the STARSS-22
database has up to five simultaneous events, while up to three over-
lapped events were occurred last year.

Also, Audioset [11] and FSD-50K [12] are used as sound events
to create new synthesized data. Other databases were needed to
create mixtures to train our source separation network, so we used
CSS 10 - Japanese [13] and JSUT [14] for Japanese data, while
using Voxceleb1 [15] for English data.

3. PROPOSED METHODS

Our SELD system adopts a source separation network and then sep-
arated sounds are input to the SELD network. As you can see in Fig.
2, four-channel FOA-format input data pass through the source sep-
aration network to obtain a speech component from each channel
input. Then, the resulting four speech components are concatenated
with their original four-channel input data. The concatenated in-
put signals are input to our basic SELD network that utilizes dual
cross-modal attention (DCMA) and soft parameter sharing of SED
and DOAE streams. Finally, we post-process prediction results by
replacing their outliers with the mean value.

3.1. Data Synthesis

We created two datasets for two tasks, source separation and SELD.
Each dataset was used to train the source separation and SELD net-
works described in Sections 3.3 and 3.4, respectively.

3.1.1. Source separation data synthesis

Since we applied source separation to the SELD task, a dataset
was created to successfully train the source separation network. In
particular, our source separation model aimed to separate speech,
that accounts for a large portion of sound events, from other sound
events, so we combined female/male speech with other events. To
obtain sound events without containing speech at all, we used the
FSD-50k and AudioSet. However, we found out that noisy events
as well as Japanese speech and female speech were not sufficient
to train the network when we extracted sources from the databases.
Therefore, background music and noise were added to speech with
a signal-to-noise ratio (SNR) of 15 dB and 10 dB, respectively. At
the same time, Japanese speech data from the CSS 10 and JSUT and
English speech data from the Voxceleb1 were added.

3.1.2. SELD data synthesis

In case of the SELD database, synthesis of more plausible data is
additionally applied to overcome the mismatch of training in syn-
thesized data and evaluating in real data. Since most of the real-
world data have contextual events or correlation between the events
that the model should learn, we tried to give some handcrafted rules
on data synthesis to overcome the mismatch.

3.2. Data Augmentation

In case of data augmentation, many papers tried to overcome the
data limitation with various approaches. We adopted two data aug-
mentation methods that critically supported the synthesized data to
learn real spatial scene. First, we use the mixup technique to give a
variety to audio clips by adding up weighted audios. Secondly, we
applied channel rotation on the FOA-format data without losing the
physical relationships between steering vectors and observations by
the reflection and rotations for the elevation or azimuth [16]. In
addition, we applied the SpecAugment [17], but could not obtain
improved performance.
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Figure 3: Overall architecture of the source separation network and its RCB.

Figure 4: Detailed structures of REB, RDB, and RCB.

3.3. Source separation

To properly separate speech components from mixtures, the source
separation network based on 143-layered residual UNet (ResUNet)
architecture [18] is used. The model efficiently decoupled magni-
tude and phase estimation for more successful source separation,
having the state-of-the-art music source separation (MSS) result on
the MUSDB18 database.

Figure 3 shows an overview of the source separation network
and the smallest block used in the architecture, residual convolu-
tional block (RCB). Throughout the system, input audio is divided
into phase and magnitude features and combined together after the
ResUNet structure, allowing better estimation of complex ideal ra-
tio masks (cIRMs). The magnitude part passes through the Re-
sUNet, which is a UNet-like architecture where their features are
contracted in the encoder part and expanded in the decoder part,
connected by the skip connection. In Fig. 3, the residual encoder
block (REB) works as a feature encoder that derives resolution of
the magnitude spectra to be contracted, and the residual decoder
block (RDB) works as a feature decoder, while intermediate con-
volutional blocks (ICBs) exist to maximize representation ability of
the architecture. The REB, RDB, and ICB are described in Fig. 4
while the RCB are represented in Fig. 3. The results of the Re-
sUNet, magnitude and phase features are combined to estimate a
cIRM.

Since a speech component can be separated from each channel
by the source separation network, we exploit four-channel separated
outputs for better estimation of DOA.

3.4. DCMA for SELD

After source separation, we tried to apply these features to SED
and DOA estimation (DOAE). Figure 5 displays the overall archi-
tecture of the SELD network. There are two streams for SED and
DOAE, and the only difference in the two streams is that the SED

Figure 5: SELD network to predict sound event classes and esti-
mates of DOA.

stream uses only log-mel spectrogram, while the DOAE stream uti-
lizes intensity vector as well. Therefore, the overall input of the
SED stream would be eight channels, composed with four channels
from original FOA inputs and four channels from source separation
results, while the input of the DOAE stream would be 14 channels,
including four channels of log-mel spectrogram and three channels
of intensity vectors from each.

The CNN-based encoder with soft parameter sharing exchanges
intermediate features in the CNN layers for the SED and DOAE,
while key and value vectors for either SED or DOAE stream of the
DCMA in the decoder part were given from the other stream to effi-
ciently learn the association between SED and DOAE features [19].
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Table 1: Experiment results on validation data. “ER”, “LE”, and “LR” represent the error rate, localization error, and localization recall,
respectively.

Num Track Input ch Add. data ER(20°) F-score(20°, %) LE (°) LR (%)

0 Baseline Baseline w/o add. data 0.71 21.0 29.3 46.0
1 5 tracks 7/4ch w/o add. data 0.664 41.9 26.712 74.7
2 3 tracks 7/4ch w/o add. data 0.652 43.5 26.931 74.9
3 3 tracks 8/4ch with add. data 0.643 45.5 25.513 77.3
4 3 tracks 14/8ch with add. data 0.615 46.2 23.973 78.2

3.5. Post-process

After outliers were obtained from the distribution of the estimates of
DOA, we post-process prediction results by replacing the outlying
estimates with the mean value.

4. EXPERIMENTS

Through experiments on validation data, we evaluated the perfor-
mance according to 1) the numbers of tracks, 2) inputs with and
without source separation results, 3) data synthesis with and without
additional datasets. Table 1 summarizes the results. The “Track”
column represents the number of tracks predicted at a frame. In the
“Input ch” column, ”7/4ch” denotes four channels of FOA data for
the SED stream, and three additional channels of intensity vector
for the DOAE stream. ”8/4ch” represents 7/4ch added by a single
channel output from the source separation network, while ”14/8ch”
means that all four channels from the source separation network
were used as additional four channels for the SED stream and ad-
ditional seven channels (four of log-mel spectrograms and three of
intensity vectors) for the DOA stream. The “Add. data” column
indicates whether data from Audioset and FSD-50K datasets was
additionally used for training the SELD network.

While up to five predictions (corresponding to the maximum
overlapped events) were obtained at each frame in experiment 1, we
also tried up to three predictions in experiment 2. Since experiment
1 provided too much predictions, experiment 2 resulted in improved
performance.

As shown in experiment 3, adding a single channel output from
the source separation network provided better results than those of
experiment 2. Moreover, all four channels from the source separa-
tion network were exploited to provide additional four channels for
the SED stream and additional seven channels for the DOA stream
in experiment 4, which achieved the best performance.

5. CONCLUSION

In this paper, we presented an SELD network based on DCMA
and soft parameter sharing of SED and DOAE streams incorporat-
ing source separation to simultaneously detect and localize sound
events in real spatial scene. In addition to the basic model based on
DCMA and soft parameter sharing, separated speech components
from the source separation network and the synthesis logic to sim-
ulate natural real data improved the performance in the SELD task
for the real spatial scene.

For a future work, we will study on better pre-processing and
post-processing techniques to improve the performance. Also, our
separation model can be improved to better extract respective fea-
tures of overlapped events.
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