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ABSTRACT

The DCASE2022 Challenge Task2 is to develop an unsupervised
detection system of anomalous sounds for seven types of machines
under domain shifted conditions. In this paper, two systems are
proposed: one only uses spectral coherence as feature input and an-
other combines spectral coherence, wavelet and log Mel. It shows
that three-feature fusion has significantly improved the results com-
pared with the baseline in general, but sometimes spectral coher-
ence alone can lead to better results. Therefore, we suggest to use
both methods in order to get stable results.

Index Terms— DCASE2022 Task2, Unsupervised anomalous
sound detection, Domain shifted conditions, Spectral coherence,
Feature combining

1. INTRODUCTION

The DCASE2022 Challenge Task 2 named “Unsupervised Anoma-
lous Sound Detection for Machine Condition Monitoring Applying
Domain Generalization Techniques” [1]focus on solving the prob-
lems caused by domain shifts. Domain shifts are differences in
acoustic characteristics between the training and test data caused by
discrepancies in operational speed, machine load, and environmen-
tal noise.In order to solve this problem, we believe that the prob-
lem needs to be solved at the source, that is, processing the audio
to mitigate the effect of domain shift or adopting better features to
characterize the audio.

In DCASE2021 task2, we uesd a denoising network based
on Deep Xi [2, 3] as a preprocess for removing noise from the
original samples and reducing the effect of conditions changes by
treating it as a type of noise.Although this improves the perfor-
mance of anomaly detection, it also makes the system more com-
plex.Therefore, in this year’s work, we aim to find a way to balance
model complexity and anomaly detection performance.

The abnormal sound of the machine is mostly caused by the
malfunction of the machine. The cyclic spectral analysis algorithm
can effectively extract the periodic fault modulation information
hidden in the cyclostationary signal through the correlation between
the signals, which reflects the unique advantages of the cyclic spec-
tral analysis algorithm compared with the traditional signal process-
ing methods [4]. At the same time, the correlation operation also

has the function of reducing noise, which makes the spectral cor-
relation algorithm show a high resistance to noise. Therefore, we
believe that the spectral coherence can achieve two effects simul-
taneously in terms of noise reduction and better representation of
machine sound features without using any pre-trained model.

In our work this year, we used spectral coherence as features
first together with MobileNetV2 [5] as anomaly detection model,
which achieved good results. On this basis, feature fusion is ap-
plied combining spectral coherence, log-Mel spectrum and wavelet
packet energy spectrum, which leads to even better results on some
machines.

2. PROPOSED SYSTEM

An overview of the proposed system which is separated into feature
extraction, training and testing phases, as shown in Figure 1 and 2.
The procedure of the proposed method is described in detail in the
following sections.

2.1. Audio processing

We use spectral coherence to extract audio features and generate
129 × 396 feature matrix as input. On this basis, the audio features
were extracted by mel-spectrogram and wavelet packet energy spec-
trum, and the three audio features were combined into 257 × 396
dimension eigenmatrix.

2.2. Feature extraction

2.2.1. Spectral coherence

Spectral coherence estimation is based on short-time Fourier trans-
form (STFT), which evidences periodic energy flows in and across
frequency bins for a cyclostationary signal.The Fourier transform
of the interactions of the STFT coefficients can returns a quantity
which scans the spectral correlation along cyclic frequency axis [6].
Then two-dimensional spectral coherence maps are obtained, which
are utilized as one of our feautre inputs.
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Figure 1: System overview-feature combining.

Figure 2: System overview-spectral coherence.

2.2.2. Wavelet packet energy

Wavelet packet energy feature is based on the audio signal in the
time-frequency resolution space features of energy distribution of
signal is the essential attribute of division, with clear physical mean-
ing, wavelet packet energy feature has a strong ability to resist noise,
can choose the most critical key features of structure in the group,
so as to reduce the dimension of feature vector, We generate a 128
× 1 dimensional feature array based on audio data.

2.2.3. log-Mel

Furthermore, we extract a 128*313 logMel eigenmatrix from audio
based on the Baseline system.

2.2.4. Feature combining

In the second system submitted by us, the spectral coherence,
wavelet packet energy feature and logMel spectrum feature ex-

tracted by us are combined in matrix dimension.

2.3. Classifier

This part, we follow the DCASE2022 MobileNetV2 baseline but to
train an overfitting model for each type of machine by leveraging
the information of section.

The learning task is to create classification boundary for each
section. It identifies from which section the observed signal was
generated. In other words, it outputs the softmax value that is the
predicted probability for each section. Due to the overfitting of the
normal data, in test phase, the output of abnormal data will have a
large difference with that of normal one.

The off-the-shelf Keras implementation of MobileNetV2 is
used with the width multiplier parameter set to 0.5. The loss func-
tion is categorical cross-entropy and the optimization algorithm is
adam with 10−5 learning rate. The batch size is 32 with 30 epochs,
the split percentage of validation is 0.1 after data shuffle.
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2.4. Outlier Detection

In this work, the anomaly score is calculated as the averaged nega-
tive logit of the predicted probabilities for the correct section, which
can be described as:

Aθ (X) =
1

B

B∑
b=1

log

{
1− pθ(ϕt(b))

pθ(ϕt(b))

}
, (1)

where B is the num of frames, t(b) is the beginning frame index
of the b-th image, ϕ is the acoustic feature, and pθ is the softmax
output by MobileNetV2 for the correct section.

To determine the anomaly detection threshold, assuming Aθ
follows the gamma distribution. The parameters of the gamma dis-
tribution are estimated from the histogram of Aθ , and the anomaly
detection threshold is determined as the 90th percentile of the
gamma distribution. If Aθ for each test clip is greater than this
threshold, the clip is judged to be abnormal; if it is smaller, it is
judged to be normal.

3. EXPERIMENTAL EVALUATION

3.1. Dataset

The data set used for our system consists of MIMII DUE [7] and
ToyADMOS2 [8], which contains normal and abnormal sounds
from seven real machines, Fan, Gearbox, Bearing, Slider, ToyCar,
ToyTrain, and Valve. Each piece of audio is 10 seconds of single-
channel audio, including sounds from machines and related equip-
ment as well as ambient sounds. Each machine has three sections,
each of which is a complete set of training and test data. For each
section, the data set provides (I) approximately 1000 normal sound
fragments in the source domain for training; (ii) Only three normal
sounds in the target area are used for training; (iii) About 100 frag-
ments of normal and abnormal sounds in the source domain for test-
ing, and (iv) about 100 fragments of normal and abnormal sounds
in the target domain for testing.

3.2. Evaluation metrics

To evaluate the performance of our method, the anomaly scores are
translated into AUC value and pAUC value. AUC [9] is defined
as the area enclosed by the coordinate axis under the ROC (Re-
ceiver Operating Characteristic) curve. pAUC is calculated as the
AUC over a low false-positive-rate (FPR) range [0, p]. In this task,
p = 0.1. The AUC and pAUC for each machine type, section, and
domain are defined as:

AUCm,m,d =
1

N−N+

N−∑
i=1

N+∑
j=1

H(Aθ(x+
j )−Aθ(x

−
i )), (2)

pAUCm,m,d =
1

bpN−cN+

bpN−c∑
i=1

N+∑
j=1

H(Aθ(x+
j )−Aθ(x

−
i )), (3)

where m represents the index of a machine type, n represents the
index of a section, d = {source, target} represents a domain, b·c
is the flooring function, andH(x) returns 1 when x > 0 and 0 other-
wise. Here, {x−i }

N−
i=1 and {x+

j }
N+

j=1 are normal and anomalous test
clips in the domain d in the section n in the machine type m, re-
spectively. N− and N+ are the numbers of normal and anomalous
test clips in the domain d in the section n in the machine type m,
respectively.

3.3. Experiment Results

Table 1: Detailed results for Fan.

Feature evaluate 00 01 02 a mean h mean

log-Mel
AUC(source) 71.07 76.26 67.29 71.54 70.75
AUC(target) 62.13 35.12 58.02 51.76 48.42

pAUC 55.40 52.14 65.14 57.56 56.90

SC
AUC(source) 62.66 60.06 75.54 66.08 65.43
AUC(target) 43.18 63.44 56.82 54.48 53.08

pAUC 58.47 55.26 56.42 56.71 56.68

Combining
AUC(source) 36.84 86.62 70.90 64.80 56.83
AUC(target) 30.98 65.08 57.58 51.21 46.14

pAUC 52.05 69.84 66.42 62.77 61.74

Table 2: Detailed results for Gearbox.

Feature evaluate 00 01 02 a mean h mean

log-Mel
AUC(source) 63.54 66.68 80.87 70.37 69.21
AUC(target) 67.02 66.96 43.15 59.04 56.19

pAUC 62.12 56.85 50.62 56.53 56.03

SC
AUC(source) 63.34 52.36 67.14 60.94 60.26
AUC(target) 58.20 50.78 49.32 52.76 52.49

pAUC 53.21 52.36 58.36 54.64 54.52

Combining
AUC(source) 69.90 62.80 73.74 68.81 68.50
AUC(target) 69.68 72.18 46.32 62.72 60.24

pAUC 61.10 62.68 51.57 58.45 58.02

Table 3: Detailed results for ToyCar.

Feature evaluate 00 01 02 a mean h mean

log-Mel
AUC(source) 47.40 62.02 74.19 61.21 59.12
AUC(target) 56.40 56.38 45.64 52.81 51.96

pAUC 49.96 50.92 56.51 52.46 52.27

SC
AUC(source) 48.02 59.76 57.34 55.04 54.54
AUC(target) 66.18 47.80 58.80 57.59 56.56

pAUC 52.57 49.68 50.89 51.05 51.02

Combining
AUC(source) 43.58 57.42 39.04 46.68 45.47
AUC(target) 71.36 66.20 83.86 73.80 73.09

pAUC 50.78 55.63 62.57 56.33 55.92

The experimental results are shown in the following table. We
propose two kinds of systems: one uses spectral coherence only as
feature input, another combines spectral coherence, wavelet packet
energy and logMel spectrum to generate eigenmatrix. The base-
line system’s MobileNetV2 is used for training. The experimen-
tal results are compared with the Mel feature used in baseline, and
the feature fusion result of slider and valve machine has a great
improvement, but bearing and fan have little, so we enhanced the
data of bearing and fan. However, the fan’s results from spectral-
coherence-only system are pretty well. We suspect that feature fu-
sion may weaken the effect of spectral coherence for some machines
under some conditions, therefore, we retain the results of spectral
coherence for comparison. It’s worth noting that none of the meth-
ods used in previous years worked well in the target domain of ma-
chines like ToyCar, but the feature fusion approach improved the
target domain by 20 percent.
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Table 4: Detailed results for slide.

Feature evaluate 00 01 02 a mean h mean

log-Mel
AUC(source) 87.15 49.66 72.70 69.84 65.15
AUC(target) 80.77 32.07 32.94 48.59 38.23

pAUC 71.57 48.21 49.69 56.49 54.67

SC
AUC(source) 95.88 96.06 90.08 94.01 93.92
AUC(target) 85.26 83.34 61.04 76.54 74.79

pAUC 66.84 61.52 62.26 63.54 63.45

Combining
AUC(source) 98.34 97.86 90.56 95.58 95.45
AUC(target) 86.22 84.88 69.50 80.20 79.43

pAUC 73.47 69.47 67.89 70.28 70.20

Table 5: Detailed results for valve.

Feature evaluate 00 01 02 a mean h mean

log-Mel
AUC(source) 75.26 54.78 76.26 68.77 67.09
AUC(target) 43.60 60.43 78.74 60.92 57.22

pAUC 55.37 54.69 85.74 65.27 62.42

SC
AUC(source) 82.34 85.90 80.42 82.89 82.82
AUC(target) 76.80 91.84 70.94 79.86 78.93

pAUC 64.68 83.52 70.26 72.82 72.00

Combining
AUC(source) 98.04 76.80 89.10 87.98 87.09
AUC(target) 94.08 67.36 65.00 75.48 73.42

pAUC 85.31 62.68 59.42 69.14 67.41

4. SUBMISSIONS

In this report, we present two abnormal sound detection systems.
Both are based on DCASE2022 MobilenetV2-based Baseline. But
the input audio features are modified:one system utilizes spectral
coherence, another took three-feature fusion as input.

5. CONCLUSION

In this paper, two abnormal sound detection systems are proposed
to perform DCASE 2022 task 2: one uses spectral coherence as
feature input and another combines spectral coherence, wavelet and
log Mel. By applying MobilenetV2 classifier, our new systems per-
forms much better than the baseline. It shows that three-feature fu-
sion has significantly improved the results compared with the base-
line in general, but sometimes spectral coherence alone can lead to
better results. Therefore, we suggest to use both methods in order
to get stable results.

Table 6: Detailed results for bearing.

Feature evaluate 00 01 02 a mean h mean

log-Mel
AUC(source) 67.85 59.67 61.71 63.07 60.58
AUC(target) 60.17 64.65 60.55 61.79 59.94

pAUC 54.41 55.09 64.18 57.89 57.14

SC
AUC(source) 61.76 79.68 73.68 71.70 70.89
AUC(target) 52.62 78.82 66.04 65.82 64.05

pAUC 51.47 66.73 61.10 59.77 59.08

Combining
AUC(source) 78.46 81.06 71.84 77.12 76.91
AUC(target) 63.72 65.80 63.04 64.18 64.16

pAUC 58.89 63.05 54.15 58.70 58.47

Table 7: Detailed results for ToyTrain.

Feature evaluate 00 01 02 a mean h mean

log-Mel
AUC(source) 46.02 71.96 63.23 60.40 57.26
AUC(target) 49.41 45.14 44.34 46.30 45.90

pAUC 50.25 52.97 51.54 51.59 51.52

SC
AUC(source) 70.96 74.12 66.62 70.56 70.43
AUC(target) 36.36 44.52 51.56 44.14 43.25

pAUC 49.57 51.94 54.57 52.03 51.95

Combining
AUC(source) 67.08 71.9 65.52 68.16 68.06
AUC(target) 42.32 46.90 72.08 53.76 50.99

pAUC 48.79 50.26 53.73 50.92 50.84
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