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ABSTRACT

This technical report details the CP-JKU submission to the auto-
matic audio captioning task of the 2022’s DCASE challenge (task
6a). The objective of the task was to train a sequence-to-sequence
model that automatically generates textual descriptions for given
audio recordings. The approach described in this report enhances
the BART-based encoder-decoder model used as the challenge’s
baseline system in three directions: firstly, the VGGish embedding
model was replaced with a custom CNN10-like model that we pre-
trained on AudioSet. Secondly, the BART encoder-decoder model
was pre-trained on AudioCaps, which led to faster convergence.
And finally, the best model was further fine-tuned by optimizing the
non-differentiable CIDEr metric using the REINFORCE algorithm.
Our best model achieves a SPIDEr score of .29 (single-model per-
formance), which is an improvement of 6.6 pp. over the challenge’s
baseline score.

Index Terms— Automatic Audio Captioning, Transfer Learn-
ing, REINFORCE

1. TASK DESCRIPTION

Automatic audio captioning [1] aims at generating whole sentences
descriptions (captions) for audio signals, which convey information
about the involved sounds, objects, and actions (e.g., ’A shrill
squeak uttered by a male person.’), and high-level information
like the temporal composition of the acoustic events (e.g., ’A car
honking three times.’). Automatically creating captions is arguably
more complex than basic intelligent audio processing tasks like
classification and tagging because the number of potential outputs
grows combinatorically with sentence length and multiple valid
prediction targets for the same input exist.

In our submission, we focused on enhancing the official base-
line system with three improvements that resulted in performance
gains in the previous editions of the DCASE Challenge: A stronger
audio embedding model pre-trained on AudioSet [2], transfer learn-
ing using the AudioCaps data set [3], and the REINFORCE algo-
rithm [4] to directly optimize the CIDEr metric used for ranking
submissions on the leader board. The resulting captioning model
achieves a SPIDEr score [5] of .29 on the public test set, which is
an absolute improvement of 6.6 pp. over the baseline system.

2. SYSTEM CHARACTERISTICS

The following section gives an overview of the architecture and in-
put features.

2.1. Model Architecture

Our model’s architecture (Fig. 1) is analogous to that of the base-
line system, which first embeds the audio signal with the VGGish
[6] network to obtain a sequence of vectors and then transforms
this sequence into a textual description using a BART-like model
[7]. We replaced the VGGish network with a CNN10-like [8] 10-
layer convolutional neural network (called CNN10 from here on)
because its representation quality proved superior in multiple stud-
ies (e.g., [8]). The architecture of CNN10 is detailed in Table 1.
CNN10 outputs a sequence of 512-dimensional embedding vectors,
which are converted to 768-dimensional BART encoder inputs to-
kens using an affine linear transformation. Both encoder and de-
coder consist of 6 transformer layers, with twelve attention heads
in the attention layers and 3072 hidden units in feed-forward layers.
The auto-regressive decoder is conditioned on the encoder output
by utilizing one additional encoder-attention block after each self-
attention block. The word inputs to the decoder are converted to
768-dimensional tokens using a frozen word embedding layer. The
parameters of this layer were initialized by transferring the weights
of a pre-trained Word2Vec Skip-Gram model [9]. The decoder out-
put tokens are converted back to a distribution over words using
a linear layer and a softmax activation. A single custom BART
architecture for audio captioning, including the audio embedding
network, has approximately 110 million parameters.

2.2. Audio Features

The 10-30 second long audio recordings sampled at 32kHz are con-
verted to 64-bin log-MEL spectrograms using a 1024-point FFT
with a window length of 800 (25ms) and hop size of 320 (10ms).
The audio features are normalized via batch normalization [10] be-
fore feeding them into the CNN10 embedding model.

2.3. Vocabulary & Word Features

Input sentences are converted into a sequence of tokens, such that
each token represents a word. Each sentence is pre-processed by
converting all characters to lower case and removing punctuation.
Splitting of words is done based on the white spaces between words.
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Figure 1: The architecture of the proposed approach. The numbers next to audio/ word representations are the corresponding tensor shapes;
the last dimension always corresponds to time.

The resulting vocabulary includes 8472 distinct words (including
special tokens) and covers all terms used in the training set.

3. TRAINING

Training of the audio embedding model and the captioning model
was done in four steps, two of which are optional:

Audio Embedding (I) In the first step, the custom CNN10 au-
dio embedding network was pre-trained on AudioSet [2], a data set
designed for audio tagging that holds approximately 2 million ex-
amples labeled for 527 classes. CNN10 was initialized with param-
eters obtained from ImageNet [11] training. The network was then
trained to minimize the binary cross-entropy between the predicted
and actual labels with a constant learning rate of 10−3 using Adam
optimizer [12] for 200 epochs; hyper-parameters were set to Py-
Torch’s [13] defaults. To reduce overfitting and improve generaliza-
tion, we used MixUp [14] on raw audios and spectrograms (α = 0.1
and α = 1, respectively), SpecAugment [15] (f = 16, t = 32), and
gain augmentation (±4db). The resulting model reaches a mean av-
erage precision of 39.84% on AudioSet’s test set, which is slightly
better than the 38% reported by Kong et al. [8]. To obtain the se-
quence of embeddings, the output of the last convolutional block of
this model was averaged over the frequency dimension and trans-
formed via a time-shared, fully-connected layer. The unused clas-
sification head was discarded after pre-training, and the embedding
model’s parameters were frozen for all experiments.

Pretraining on AudioCaps (II, optional) In a optional second
step, the encoder-decoder model was pre-trained on the AudioCaps
[3] data set for 50 epochs using Adam optimizer with a learning
rate of 10−5 to minimize the cross-entropy loss between the pre-
dicted and the expected words w∗

t in the ground truth sentence

s∗ = (w∗
1 , . . . w

∗
T ) of length T :

LCE = − 1

T

T∑
t=1

log(p(w∗
i | θ)) (1)

Training on ClothoV2 (III) In step three, the BART model was
trained to minimize Eq. 1 on the ClothoV2 data set [16]. If pre-
training on AudioCaps (step II) was performed before, the model
was only trained for 30 additional epochs. In this case, the learn-
ing rate started at 10−5 and was linearly decayed to 5× 10−6 from
epoch 20 onward. If no pre-training on AudioCaps was performed,
the model was trained from scratch for 60 epochs. The initial learn-
ing was set to 10−5, which was linearly decayed to 5 × 10−6 in
between epoch 20 and 30 and kept constant after that.

REINFORCE (IV, optional) In an optional fourth step, the re-
sulting model was further fine-tuned for 60 more epochs by mini-
mizing the expected value of the non-differentiable CIDERr score
as described by Mei et al. [17]:

Lscore = −Es∼p(s|θ)
[
CIDEr(s, s∗)

]
(2)

s = (w1, . . . , wT ) is a sentence sampled in normal mode (i.e., no
teacher forcing), and CIDEr(s, s∗) is the CIDEr score between the
predicted sentence s and the ground truth sentence s∗. The score
function estimator gives the gradient wrt. to Eq. 2:

∇θLscore = −Es∼p(s|θ)
[
CIDEr(s, s∗)∇θlog p(s | θ)

]
(3)

This expectation was approximated via a single Monte Carlo sample
and the CIDEr score between the greedily decoded sentence sg and
the ground truth was used as a baseline to reduce the variance:

∇θLscore ≈
(
CIDEr(sg, s

∗)− CIDEr(s, s∗)
)
∇θlog p(s | θ)

(4)
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CNN10

2× (3× 3)@64, BN, ReLU
Pool (2× 2)

2× (3× 3)@128, BN, ReLU
Pool (2× 2)

2× (3× 3)@256, BN, ReLU
Pool (2× 2)

2× (3× 3)@512, BN, ReLU
Pool (2× 2)

Frequency Pooling
FC 512, ReLU (shared over time)

FC 527, Sigmoid (classificaiton)

Table 1: The architecture of the audio embedding model (CNN10).
The embedding vectors that are produced by the first Fully-
Connected (FC) layer are used as input to the BART encoder.

The Adam optimizer was used to minimize Eq. 2 with estimated
gradients from Eq. 4. The learning rate was initially set to 10−5,
linearly decayed to 5 × 10−6 in between epochs 20 and 30, and
finally kept constant for the remaining 30 epochs. SpecAugment
was utilized with the previously reported hyper-parameters in all
training stages to reduce overfitting on the audio inputs.

4. RESULTS

The evaluation results of models trained with variants of the
previously described procedure are given in Table 2. The results
suggest that all three introduced modifications (using CNN10
embeddings, pre-training on AudioCaps, and fine-tuning with the
REINFORCE algorithm) lead to an improvement over the baseline
system.

We submit predictions of following systems to the challenge:

• Submission 1: A single BART model trained on ClothoV2
only (step I & III).

• Submission 2: A single BART model pre-trained on Audio-
Caps and fine tuned on ClothoV2 (step I-III).

• Submission 3: Submission 2 fine-tuned for 60 more epochs
using the REINFORCE algorithm (step I-IV).

• Submission 4: An ensemble of the 6 best BART models
checkpoints of submissions 2 & 3. Ensembling was done
during decoding by selecting the next word in each step
based on the average value of the unnormalized outputs of
all models.
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Table 2: Results on the ClothoV2 test set. Step I: Audio Embedding, Step II: Pretraining on AudioCaps, Step III: Training on ClothoV2 ,
Step IV: CIDEr optimization with REINFORCE
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