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ABSTRACT

We propose a network for sound event detection and localization
based on a 3D CNN for the extraction of spatial features followed
by several conformer layers. The CNN performs spatial feature
extraction and the subsequent conformer layers predict the events
and their locations. We combine this with features obtained from a
fine-tuned audio-spectrogram transformer and a multi-channel sep-
aration network trained separately. The two architectures are com-
bined by a linear layer before the final non-linearity. We first train
the network on the STARSS22 dataset extended by simulation us-
ing events from FSD50K and room impulse responses from previ-
ous challenges. To bridge the gap between the simulated dataset and
the STARSS22 dataset, we fine-tune the model on the development
part of the STARSS22 dataset only before the final evaluation.

Index Terms— SELD, 3D CNN, Conformer, Audio Spectro-
gram Transformer, Separation

1. INTRODUCTION

We propose a solution to simultaneously classify sound events
and estimate their location. Our solution mixes the use of a pre-
trained self-supervised model, a pre-trained multi-channel sepa-
ration model, and a dedicated network for sound event detection
and localization (SELD). The self-supervised model is the self-
supervised audio spectrogram transformer (SSAST) [1]. The mul-
tichannel separation algorithm is independent vector analysis with
a neural source model [2]. We focus on the first order ambisonics
(FOA) signals as they do not contain spatial aliasing up to 9 kHz.
We use the separation algorithm and SSAST to produce high quality
features for sound event detection. However, both features do not
contain much spatial information so we combine them with ded-
icated SELD network. The SELD network is composed of a 3D
CNN as input which allows to process the input channels jointly.
The features produced by the CNN are then processed by an eight
layer conformer encoder. The concatenation with the SSAST fea-
tures is then projected by a linear layer to obtain the final output. A
diagram of the whole system is provided in Fig. 1.

2. PROPOSED SELD NETWORK

2.1. Features

The input data to our network are the 4 channels first order am-
bisonics (FOA) signals. First, to help with recognition of events,
we run the FOA into a separation network that roughly separates
the different events. The separation network is based on indepen-
dent vector analysis [3] with a neural source model [2] described

FOA (4ch)

pre-trained parameters

trainable parameters

C
on

v3
d

C
on

v2
d

Li
ne

ar

Li
ne

ar

Li
ne

ar

C
on

fo
rm

er Ta
nh

C
at

A
vg

Po
ol

IVA

Feat. ext.
(mel-spec, IV)

7x
12

8x
50

0

4ch

5x
52

7x
49

7

12
8x

49
7

4ch

omni (1ch)

12
8x

64
x2

50

12
8x

32
x1

25

12
5x

12
8

12
5x

12
8

12
5x

25
6

12
5x

15
6

ASTASTASTASTSSAST

x8

Figure 1: Structure of the proposed systems. Blue blocks have train-
able parameters. Greene blocks have been pre-trained. Gray blocks
are not trainable.

in Section 2.1.1. We obtain four tracks out of the separation net-
work. These four tracks as well as the omni channel of the FOA are
run through a fine-tune Self-Supervised Audio Spectrogram Trans-
former (SSAST) described in Section 2.1.2. The spatial features are
the log-mel-spectrograms of the four FOA channels as well as the
intensity vectors (IV) [4] as used in previous SELD systems. We
use 128 bands for the mel-spectrogram analysis.

2.1.1. Separation Network

The multichannel separation network consists of a blind dereverber-
ation part using weighted prediction error (WPE) [5, 6], followed by
independent vector analysis (IVA) [7, 8]. For WPE, the STFT uses
FFT size of 512 with 3/4 overlap and a Hann window. The number
of iterations, delays, and taps is 3, 3, and 10, respectively. For IVA,
the STFT uses FFT size of 2048 with 3/4 overlap and a Hann win-
dow. The IVA algorithm used is iterative source steering [3] with
a neural source model [2]. The number of IVA iterations is 20 and
we use demixing matrix checkpointing [9] to save memory. The
neural source model uses three 1D convolutional layers with GLU
non-linearities and group normalization with four groups. The hid-
den dimension is 128 which we map back to the STFT size by a 1D
transposed convolution layer. Finally, a sigmoid non-linearity pro-
duces a mask-like signal from the network’s output. A system de-
scription of the IVA separation and neural source models are shown
in Fig. 2.

Since we do not have access to the ground-truth separated sig-
nals for the SELD datasets, we cannot use the conventional source
separation loss functions, e.g., SI-SDR or CI-SDR. However, we
have access to the direction of arrival of the events so that we can
use a recently proposed spatial loss [10]. To train the network, we
cut the input data into 5 s blocks. Since IVA assumes the sources to
be static in this interval, we use the median DOA as target.
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2.1.2. Self-Supervised Audio Spectrogram Transformer

The Self-Supervised Audio Spectrogram Transformer (SSAST) [1]
is an all-attention model that has been extensively pre-trained by
self-supervision on Audioset. We fine-tune a pre-trained version of
SSAST [11] on the STARSS22 dataset and the baseline extended
dataset prepared by the organizers of Task 3. The fine tuning is
done for the SED part of the task only. To this end, the DOA in-
formation is stripped from the targets and multiple events of the
same class merged together when they appear simultaneously. The
SSAST model operates on 5 s blocks and produces 527-dimensional
embedding vectors for each of the 497 frames (approx. 10ms per
frame).

2.2. SELD Network

The main purpose of our network is to extract spatial information
from the input FOA features. We feed the log-mel-spectrograms
of the four FOA channels and the IV channels into a convolutional
network with two layers (total of 7 channels). The first is a 3D con-
volutional layer. The three dimensions are channels, mel-frequency
bands, and time. We expect that such 3D filters will be better able
to capture the directional information present in the input signal.
The kernels are of size 7 × 3 × 3. The padding used is (0, 1, 1),
which results in a 2D output signal. Thus, the second layer is a
2D convolutional layer with 3 × 3 kernels. Strides of size 2 are
used in the frequency and time dimension to reduce the size of the
input signal. The number of channels after the 3D convolution is
128. Group normalization with four groups and ReLU activations
are used after each layer. The remaining 32 frequency dimensions
are merged with the 128 channels and projected to dimension 128
by a linear layer before the output. The output of this stage is an em-
bedding signal with 128 dimensions and a frame interval of 40ms
This output is fed into a conformer-encoder [12] with eight layers
and convolution kernel size 7.

WWe project the SSAST embedding vectors of the omni FOA
channel and the 4 IVA output channels (see Section 2.1.1) from 527
to 128 dimensions by a linear projection followed by ReLU acti-
vations. After this, these five channels are averaged into one. The
frame rate is adjusted to that of the spatial feature extraction net-
work by average pooling of size four along the time axis. The em-
bedding obtained is concatenated to the output of the conformer to
obtain an embedding of size 256. Finally, a linear layer projects
this concatenated embedding to the output size. The output is in
the Multi-ACCDOA format [13] with 4 tracks, thus the output size
is 4 tracks × 3 dimension of Cartesian DOA vectors × 13 classes,
a total of 156 outputs per time frame. We use a hyperbolic tan-
gent non-linearity to limit the output to the [−1, 1] range. The event
presence probability is given by the length of the 3D vector for each
track/class slot. The whole system is illustrated in Fig. 1. The num-
ber of parameters of the different modules are given in Table 1.

2.3. Post-processing

The post-processing works in two steps. For the explanation, let
qntc be the output of the nth frame, tth track, and cth class. The
event probability is taken to be pntc = ‖qntc‖. First, events are de-
tected if pntc ≥ σc at the output framerate of the network. We run
a deduplication procedure to remove duplicate events produced by
the Multi-ACCDOA. Events from different tracks of the same class
with directions closer than θc, a class specific threshold, are merged
together. Second, we aggregate all the events from the same output
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Figure 2: The structure of the separation network used to obtain the
input features.

Model # Parameters

SSAST 87582943
IVA 2366849
SELD 3861020

Total 93810812

Table 1: List of models used and their number of parameters.

frame together. The output frames of the network are 40ms and the
target frames are 100ms. We have 2 or 3 events per output frame,
track, and class (at most). For every output frame and class, we
find the event with largest pntc and count all events within θc. If
the count is strictly larger than θc, we declare an event with direc-
tion being the average of all aggregated events, weighted by their
probability.

3. DATASET AND TRAINING

3.1. Datasets

We use the three datasets described in Table 3 with a total of 42.9 h
and 2.0 h of training and validation data, respectively. From the
DCASE2022 task 3 dataset, STARSS22 [14], fold3 (2.9 h) is used
for training and fold4 (2.0 h) for validation, as suggested. Since this
is not sufficient, we also use the baseline training synthetic dataset
(Synth1) provided by the task organizers [19]. This dataset is cre-
ated by remixing sound events from the FSD50K dataset [15, 16]
with the measured RIR from the TAU-SRIR database [18, 17].
However, the dataset Synth1 only contains up to two overlapping
events, and no interfering events. Thus, we use the original recipe
provided to construct Synth1 [20] to create an extended training
set, Synth2. We change the recipe in the following ways.

1. Increase the maximum number of overlapping events from 2
to 4.

Name Ref. Type

STARSS22 [14] DCASE2022 task 3 dataset

FSD50K [15, 16] audio dataset
TAU-SRIR DB [17, 18] RIR dataset
SSAST [1, 11] pre-trained pytorch model

Table 2: List datasets and models used
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Name Ref Type Ov. Inter. Train Val.

STARSS22 [14] Rec. 5 3 2.9 h 2.0 h
Synth1 [19] Sim. 2 0 20 h —
Synth2 Sim. 4 1 20 h —

Table 3: The datasets used. Columns “Ov.” and “Inter.” indicate
the maximum number of overlapping event, and the number of in-
terfering out-of-classes events. Synth1 was provided by the task
organizers. Synth2 was created by the authors based on the recipe
provided to create synth1 [20]. For the validation, the test set of
STARSS22 was used.

2. Add interfering sound events not included in the classifica-
tion task. For the interference, we select clips from the fol-
lowing categories of FSD50K: Cutlery, silverware,
Computer, keyboard, Chewing, mastication,
Buzz, Crumpling, crinkling, Typing, Clock,
Meow, Breathing, Glass, Writing, Chink,
clink.

The base external datasets and pre-trained models used are summa-
rized in Table 2 and the training datasets in Table 3, respectively.

3.2. Data Augmentations

SpecAugment We apply SpecAugment [21] using the same mask
to all FOA channels prior to computation of mel-spetrogram and
intensity vector during training. The maximum time masking is
2% of the total length, while frequency masking is up to 10%.
Random Rotations To avoid the network over-fitting to specific
locations, we apply random rotations to the FOA input, as has been
successfully used for SELD networks in previous challenges [22].
By applying the same rotation to the targets, we are able to simulate
large spatial variations in the input dataset. This augmentation is
applied to input examples with probability 1/2.

3.3. Training

We train the network with the recently proposed Multi-ACCDOA
loss [13]. The optimizer is Adam [23] with learning rate 0.001. The
network is trained for 1000 epochs on STARSS22, Synth1, and
Synth2 datasets. The progress of the optimization is monitored on
the validation set of STARSS22 using the SELD score,

SELD =
1

4

(
ER+(1− F) +

LE

180
+ (1− LR)

)
, (1)

where ER, F, LE, LR, are the official SELD metrics [24]. Af-
ter training finishes, we fine-tune the network on the training part
of STARSS22 only, restarting from the checkpoint with lowest
SELD score with learning rate 0.0002. We proceed until the valida-
tion SELD score starts increasing again. Finally, we select the 10
checkpoints with lowest validation score and average their weights.

4. RESULTS

Table 4 shows our results on the validation set of STARSS22 com-
pared to that of the baseline system [25].

Model Input ER F LE LR

Baseline MIC 0.71 0.18 32.2 0.47
Baseline FOA 0.71 0.21 29.3 0.46
Proposed FOA 0.51 0.49 16.9 0.63

Table 4: SELD metrics of the proposed system compared to that of
the baseline system [25].
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