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Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
International Audio Laboratories, Erlangen, Germany

{lopa.schmidt, beran.kilic, nils.peters}@fau.de

ABSTRACT

The DCASE challenge track 1 provides a dataset for Acoustic
Scene Classification (ASC), a popular problem in machine learning.
This years challenge shortens the provided audio clips to 1 sec, adds
a Multiply-Accumulate operations (MAC) constrain and addition-
ally counts all parameters of the model. We tackle the problem by
using three approaches: First we use a linear model with global mo-
ments of the spectrogram, getting into reach of the baseline; then we
use feature selection to reduce generalization gap and MACs; and
finally, structured filter pruning to bring the number of parameters
below the parameter constraint. Using the evaluation split of the
development dataset, our result shows an increase to 49.1% overall
accuracy compared to the baseline system with 42.9% accuracy.

Index Terms— ASC, structured pruning, quantization aware
training

1. INTRODUCTION

The task of Acoustic Scene Classification (ASC) groups recordings
into general scenes, such as ”airport”, ”bus”, ”metro”, etc. It helps
applications to specialize for certain acoustical environments. For
example the algorithms of hearing aids should work in a close con-
versation differently than in an outside walk.

The DCASE challenge task 1 provides a dataset for training
and evaluation such models [1]. One prominent difficulty of the
DCASE challenge is inbalance of per-device data. Recordings from
three real devices (40h, 3h, 3h respectively) are mixed to provide six
simulated devices (18h in total). The number of samples per-class
is on the other hand balanced and equal for all ten classes.

This year Task1 a) increases the classification difficulty consid-
erably [2]. The recording length is decreased from 10s to a sin-
gle second. The baseline system dropped in accuracy from 47%
to 42.9% and even as a human listener many recordings of classes
are not distinguishable. Especially those which are silent or contain
only low-frequency components are hard cases.

Furthermore the complexity constraints of the model are tight-
ened. The maximum number of parameter constrain includes zero
valued parameters (counting all of them) which makes unstructured
pruning impossible. For the first time the Multiply-Accumulate
counts (MACs) is constrained to 30MMACs - making the use of
convolutional layer (which are naturally small in parameter count,
but high in MACs) more difficult.
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Figure 1: BC-Resnet model with feature selection and skip connec-
tion. X and ŷ are input features and class estimation, dimensions
are depicted in brackets.

We opt for the best model of last year’s submission [3] and
use a combination of feature selection and structured filter pruning
to keep the model complexity in constraints. Section 2 describes
the network architecture and compression techniques. Section 3
provides results and explains experiments. Finally we conclude our
results in Section 4 and provide an outlook.

2. METHODS

We will introduce first the model architecture, a combination of
last year’s winner with Support Vector Classifier (SVC) as a base-
line, and then discuss feature selection, structured filter pruning and
quantization respectively.

2.1. Model Architecture

Listening to audio samples from different classes shows that many
samples contain temporally few information. We use therefore a
combination of two models (see Figure 1) . First a linear model,
classifying global features, and a BC-Resnet Mod-8 [4]. As in-
put feature we use a log-mel filterbank with 256 bands. The linear
model uses moments up to 5th order as input features and throws
away temporal information. It is pre-trained with l1 sparsity and se-
lects approximately half of the input features. A Broadcast-Residual
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network (BC-Resnet) [4] is used in tandem and improves prediction
of the linear model. It can detect temporal-frequency patterns in the
input spectrogram by using 1D/2D CNN layers. The BC-Resnet
is in the same flavor as the last year’s winning submission. It adds
residual normalization to all layers [3]. We make two modifications:
First, we add a bias to the last convolution layer. This makes adjust-
ments to the learned SVC bias possible before normalizing the log
probabilities. Second, we initialize weights and biases with zeros,
ensuring that at the beginning of training the model predictions only
depends on the linear part.

2.2. Feature Selection

After training the model to full accuracy, we conducted a second
experiment selecting important features from the full feature set.
The MACs are linear dependent on the input image size and sub-
selecting rows in the spectrogram allows reducing the total MACs
without making any model adjustments.

We setup the following optimization problem as

min
w,θ

fθ(w ⊙X) s.t. card(w) < C, (1)

where w is the feature mask along frequency axis, operation ⊙ indi-
cates multiplication per row and θ is the pre-trained model parame-
ter set. We relax the constrain with the alternating direction method
of multipliers (ADMM) [5] and use the hard constrain operator as
solution to the proximal sub-problem [6].

The derived optimization routine is not guaranteed to converge
because of the model architecture. We use three training phases to
improve convergence, we pre-train our tandem model until conver-
gence. Then we optimize for sparsity in the feature set by keeping
the learning rate of the duals fixed and anhealing those of the primal
variables (the model parameters). Finally we fine-tune the model by
setting selected features to zero for a number of epochs. The accu-
racy of the final phase is reported in the results. A hyper-parameter
search over both initial learning rates is required to find a good so-
lution.

Together with the linear initialization in Section 2.1 we ob-
served a much improved convergence of our model to full accuracy.
Accidentally we used the masked feature only once, which resulted
in a huge generalization gap ( 53% accuracy) and may indicate that
our method works.

2.3. Structured Filter Pruning

This section describes how we apply structured filter pruning to the
model of Section 2.1. The advantage of the BC-Resnet is that it
only consists of convolutional layer, making the pruning technique
simpler as we don’t have to deal with other architectures.

The filter importance is measured as the max or Frobenius norm
over all its entries

W i
j = ∥Wi[j, k, :, :]∥∞,F, k ∈ K,

with i the layer index, j the output channel and K the set of reach-
able input indices from previous layers. In experiments we observed
a more stable convergence for the Frobenius norm, so we used it in
all our experiments.

We create a global, ordered list of filter importance (with all in-
put assumed reachable) and perform binary search over the thresh-
old until constrains are fulfilled. In each update step a reachabil-
ity analysis of layers give the input channels K and filter impor-

tances are updated accordingly. The routine gives a filter impor-
tance threshold, which ensures that MACs and number of parame-
ters are fulfilled. We ensure that at least one output channel is active,
such that the network is not disconnected.

With the threshold a similar optimization problem as in Section
2.2 is setup and the same combination of dual gradient-ascent and
hard-threshold operator is used to solve the problem. We also use
the same scheduler and three phases for optimization.

2.4. Quantization

First we planed to combine the filter pruning with 8bit constraints
[7], but because of time limitations we used quantization aware
training (QAT) from the TensorRT library [8]. We apply QAT after
feature selection and filter pruning and quantize all our 32bit float-
ing points to 8bit integers.

3. EXPERIMENTS AND RESULTS

3.1. Training and testing dataset

In all our experiments we use the DCASE 2022 challenge task
1 [9] split providing 139619/29680/29680 samples for train-
ing/validation/testing. Each sample belongs to one of 12 European
cities, 3 real (A, B, C) or 6 simulated devices (S1-S6) and to one of
10 different acoustic scenes. Those are ”airport”, ”bus”, ”metro”,
”metro station”, ”park”, ”public square”, ”shopping mall”, ”street
pedestrian”, ”street traffic”, ”tram”. The simulated devices S1-S6
are generated by using measured impulse responses and applying
range compression to recordings of device A. Each sample has a
length of 1sec and a sampling rate of 44 1kHz.

3.2. Feature extraction

We downsample the input signal to 16kHz and use a Mel filterbank
for the feature extraction. The Mel spectrogram has window length
of 130ms, overlap of 30ms and 256 Mel bands. We apply a loga-
rithmic transformation to the filterbank output. For the moments we
use mean, variance, skewness, kurtosis and hyperskewness.

3.3. Training details

The input features are augmented to generalize the model. We use a
random roll of 40% of the signal length. We also use Specaugment
[10] in frequency domain with mask parameter of 20 and Mixup
[11] with α = 0.2. We apply stochastic gradient descent (SGD) to
the model and train for 80 epochs. The learning rate is increased to
0.035 in a warmup phase of 3 epochs and then decreased to 0.00035
in a period of 77 epochs. We use momentum of 0.9, weight decay
of 0.001 and a mini-batch size of 64.

For the ADMM optimization we use 5 update epochs and 2 fine-
tuning epochs. For the update step we initialize a linear SGD with
learning rate of 0.001 and decrease it gradually to 0.0001 duing the
7 optimization epochs.

3.4. Results

We observe multiple outcomes from our results. The linear model
decreases accuracy by around 2.7% while using 2282 times less
MACs and four times less parameters (see Table 2). Especially for
classes like ”park”, ”shopping mall” and ”street traffic” the linear
model is on-par or even out performs the tandem model (see Figure
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A B C S1 S2 S3 S4 S5 S6 Overall
Linear 54.58 44.15 44.42 45.42 45.12 46.70 38.25 41.79 38.52 39.90

Feature Sel. 72.36 61.44 64.54 62.93 59.39 60.10 47.10 47.02 40.34 51.52
Pruned 71.95 58.24 63.19 60.13 58.89 60.07 46.77 47.66 40.67 50.76

Pruned+Quant. 70.54 55.68 60.30 57.95 55.99 58.05 44.48 47.46 40.13 49.06

Table 1: Top 1 accuracy (%) on the test split of the DCASE 2022 task1 dataset, A,B,C are real recordings and those of S1-S6 are simulated

2). This may be due to few temporal features (like in a park) or easy
distinguishable global frequency distributions (like cars on a street).
When using the BC-Resnet Mod-8 [4] from last year, the accuracy
for the new dataset shows that the task at hand is much harder. Es-
pecially the reduced recording length of 1sec makes inference about
the acoustical scene in many cases difficult. The feature selection
reduces the total number of MACs and we have seen no decrease in
accuracy when masking out 64 features. Applying structured filter
pruning works well in our scenario, as seen in Table 2 and decreases
performance only by 0.76%. This may also be due to using a linear
model in tandem and reducing the number of input features. For the
device accuracy distribution we get similar results from last year.
The real device A, which has a larger portion of the samples, has
a much better accuracy when compared to other devices (see Table
1). On the other hand, devices A4-A6, which are not in the training
dataset, have the worst accuracy during tes ng. The QAT worked
not as well as hoped for and reduced accuracy by another 1.7 % (as
seen in Table 2). We tried out quantization of Nemo [12] and torch
native quantization routines [13], but only TensorRt [8] gave us vi-
able results. It may be interesting to see whether combined pruning
and quantization constraints can improve that performance.

We submit our best model to the DCASE challenge with fea-
ture selection, pruning and quantization combined. It gives a total
accuracy of 49.06% with 127.84k params and 17.383 MMACs in
8bit depth for weights, as well as activation functions.

Params MMACSs Bits Acc (%) LogLoss
Baseline [2] 47k 29.234 8bit 42.90 1.575

Linear 12.81k 0.01281 32bit 39.90 1.858
Pruned 127.84k 17.383 32bit 50.76 1.521

Pruned+Quant. 127.84k 17.383 8bit 49.06 1.565

Table 2: Parameter count and MACs for each model. We used the
Pruned+Quant model as our final submission.

4. CONCLUSION

Our submission for the DCASE challenge 2022 extends the model
architecture and feature extraction of the winner in DCASE 2021.
We modified and developed an optimizer for structured pruning and
feature selection to fit the new challenge constraint. We applied
methods from convex optimization, such as ADMM [5] and proxi-
mal operators [6], in context of DNNs to perform pruning and fea-
ture selection. Structured filter pruning slightly reduced the model
accuracy by 0.76%. The final model requires only 17.38 MMACS
and 127.84k parameters. It achieves an total accuracy of 49.06% on
the testing split of the DCASE challenge 2022 task 1 [9] and thus,
outperforms the baseline system in accuracy and total MACs.
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(a) Final model

(b) Linear model

Figure 2: Confusion matrices for ASC ten class problem on the
testing dataset of DCASE 2022 task 1. The final submission is on
the top and a linear model on the bottom. Classes are only shown
on the X axis to improve readability.
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