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ABSTRACT

In this report, we present our methods proposed for participating
the Detection and Classification of Acoustic Scenes and Events
(DCASE) 2022 Challenge Task 4: Sound Event Detection in Do-
mestic Environments. The proposed methods integrate a semi-
supervised sound event detection model (called random consistency
training, RCT) trained with the relatively small official dataset of
the challenge, and a self-supervised model (called audio teacher-
student transformer, ATST) trained with the very large AudioSet.
RCT uses the baseline convolutional recurrent neural network
(CRNN) of the challenge, and adopts a newly proposed semi-
supervised learning scheme based on random data augmentation
and a self-consistency loss. To integrate ATST into RCT, the fea-
ture extracted by ATST is concatenated with the feature extracted by
the convolutional layers of RCT, and then fed to the RNN layers of
RCT. It is found that these two types of feature are complementary
and the performance can be largely improved by combining them.
In development, RCT individually achieves 39.80% and 61.12% of
PSDS1 and PSDS2, respectively, which are improved to 45.99%
and 70.65% by integrating the ATST feature, and further to 47.71%
and 73.44% by ensembling five models with different training con-
figurations.

Index Terms— Sound event detection, self-supervised learn-
ing, audio pretraining, semi-supervised learning, consistency train-
ing, data augmentation

1. INTRODUCTION

Polyphonic sound event detection (SED) suffers from the data defi-
ciency [1] problem for a long time. One possible solution to miti-
gate such problem is to leverage abundant external sources. In pre-
vious challenges, weakly-labeled real, strongly-labeled synthesized
and unlabeled sound clips are utilized for SED model training. A
baseline convolutional recurrent neural networks (CRNNs) model
with the MeanTeacher-based semi-supervised learning (SemiSL)
scheme [2] is proposed to leverage these three sorts of data in model
training. Although the unsupervised audio clips used in the baseline
system do not have labels, they still include some prior knowledge
that only the sound events of interest are present in each audio clip.
And thus, the unsupervised data in the DESED dataset [3] are all
in-domain unlabeled data.

In this year, out-domain unlabeled sound clips (e.g. AudioSet
[4]) are also allowed to be utilized. Unlike the in-domain ones,
these audio clips contains various acoustic scenes and events that
may beyond the scope of the DESED dataset. Such variety poses
obstacles on directly using these out-domain data for SED system

training. Instead, we could utilize these out-domain data individ-
ually with the help of self-supervised learning (selfSL) methods.
Although most SelfSL models are designed for only clip-level au-
dio tasks [5–7], we find that they could also perform well on the
frame-level SED task and fits well with SemiSL methods.

As for SemiSL, we apply a random consistency training (RCT)
scheme [8] in addition to the MeanTeacher scheme of the baseline
system. RCT trains the CRNN model with a random data augmen-
tation scheme and an extra self-consistency loss. As for random
data augmentation, we apply two types of data augmentation to each
training sample, which are hard mixup [8], and a randomly selected
one from a total of four types of audio warping methods, including
time mask, frequency mask [9], frame shift [10] and filter augmen-
tation [11]. The extra self-consistency loss is used to constrain the
predictions for an audio clip and the augmented version of the au-
dio clip to be identical. Such loss function is compatible with the
MeanTeacher loss, and is able to stabilize the training process.

As for SelfSL, we adopt the audio teacher-student transformer
(ATST) model [7], trained with the AudioSet [4]. ATST utilizes a
transformer encoder [12] to extract an embedding for each audio
clip. The training of ATST follows the concept of contrastive learn-
ing [13, 14], where the model is trained to classify two seriously
warped creations (two positive samples) from the same audio clip
as the same class. ATST is designed for clip-level audio processing
by introducing a special clip-level classification token, which ac-
cumulates information from the frame-level embeddings. To adapt
this model for the frame-level SED task, we only use the frame-level
embeddings in this work.

To integrate the ATST embeddings into the baseline CRNN
model, we concatenate the ATST embeddings with the output of
CNN layers as a fused feature, and feed it to the following RNN
layers. From our experiments, we observe that, when cascaded with
RNN layers, although solely using the ATST embeddings or CNN
outputs could achieve reasonable results, their combination can fur-
ther improve the SED performance.

2. PROPOSED METHOD

2.1. Baseline CRNN model for SED

To better illustrate our method, we would like to briefly introduce
the baseline CRNN model. The official DESED dataset contains
three sorts of data: weakly labeled real data, strongly labeled syn-
thetic data and unlabeled data. The provided baseline CRNN model
[2] sets up different mechanisms to take advantages of these datasets
in the training process. The baseline model uses a 7-layer CNNs
model with context-gate activation to extract the frame-level fea-
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tures from the input audio clips, which are then fed to a 2-layer
bidirectional GRU network to model long-term dependencies. The
RNNs model outputs the frame-level classification results (corre-
sponding to strong labels). And the clip-level classification results
(corresponding to weak labels) is obtained by applying an attention
module [2] to the frame-level results. The baseline system utilizes
MeanTeacher [15] to tackle the unlabeled data, in which the stu-
dent model is trained to give consistent predictions with the pseudo
labels given by the teacher model.

2.2. RCT for semi-supervised learning

In our system, we apply RCT [8] together with MeanTeacher. Two
core techniques are included in the RCT: the random data augmen-
tation scheme and the self-consistency loss.

RCT augments each audio clip in two ways. The first one is
hard mixup, where each audio clip is added with another one or
two audio clips. And their corresponding labels are combined to-
gether by taking the logical OR of them. This way, all the sound
events present in original audio clips will be considered as concur-
rent sound events in the mixed audio clip. The other way of data
augmentation is to warp the audio clip. Four types of warping are
used, including time shift [10], time mask, frequency mask [9] and
filter augmentation [11]. One of the four types of data augmenta-
tion is randomly selected and applied to each audio clip at training.
Therefore, by applying both hard mixup and random audio warping,
the training batch size would be tripled after RCT data augmenta-
tion.

RCT also proposes a self-consistency loss, which constrains
the model prediction for the original and augmented audio clips to
be identical, by minimizing the mean square error (MSE) between
the predictions. Different from the MeanTeacher loss, it does not
freeze the gradient of either side. As a result, the model would
learn to give consistent representations for different data augmen-
tations. Such self-consistency constraint between the original and
augmented samples always holds regardless of the correctness of
the predictions, and thus is able to stabilize the training process.

2.3. ATST for self-supervised learning

We apply self-supervised learning method, ATST [7], to train a fea-
ture extraction network using the very large AudioSet [4]. We ex-
pect that this could further strengthen the representation ability of
the audio feature.

ATST utilizes a transformer encoder [12], and is designed for
clip-level audio tasks. In addition to the frame-level tokens, an extra
classification token is created to represent the entire clip. The clip-
level token accumulates information from frame-level representa-
tions, and only the clip-level token is used for self-supervised learn-
ing. ATST [7] follows the concept of teacher-student contrastive
learning [13]. Same as MeanTeacher [15], during training, ATST
holds an exponential moving average of the transformer encoder
(the student network) as a teacher model. The training target for
the student model is to represent an audio clip identically as the
teacher model does. To increase the difficulties of this training tar-
get, two different views of one audio clip are created for the student
and teacher model, respectively. In experiment, each 10-second au-
dio clip is first mixed up with two different clips separately, and
then randomly resized and cropped into two 6-second segments. A
proportion of temporal overlap for the two views is guaranteed in
cropping, which holds the rationality of identifying these two views

as a positive pair. In training, an extra feedforward layer is added
at the end of the student model, to avoid the model collapse [13].
The MSE between the output of the clip-level classification token
from the student and teacher models is taken as the self-supervised
training loss. We encourage the readers to refer to the original paper
of ATST [7] for a better understanding.

The performances of ATST on several clip-level audio process-
ing tasks are promising, which indicates its strong representation
ability for audio signals.

2.4. Combining RCT and ATST

As a clip classification model, ATST outputs a clip-level classifica-
tion token. Nevertheless, we find that this clip-level representation
would drastically hurt the SED model performances, possibly be-
cause of the lack of temporal information. Therefore, we take the
frame-level embeddings of ATST as the features, which is obtained
by averaging the hidden units of the last two ATST transformer
blocks. Note that ATST training only considers the clip-level clas-
sification loss, and the frame-level embeddings are not directly used
in the ATST training.

We first consider to replace the CNNs outputs/features of the
baseline CRNN model with ATST features, and cascade the ATST
network with the RNN layers, referred to as ATST-RNN. The ATST
parameters can be either frozen or finetuned during the training of
the downstream SED task. However, we could only finetune the
last three transformer blocks of the ATST model, since finetuning
all layers would lead to serious overfitting at the very early stage of
training.

Furthermore, we deem that the feature extracted by the CNNs
layers could be compatible with the ATST feature. Consequently,
we concatenate the ATST feature and the CNN feature, and then
feed the combination to the following RNN layers. This scheme
is referred to as ATST-CRNN, and is used in our final submission
systems. There would be a problem if the CNN layers are trained
from scratch, since the model would be trained to rely more on the
pretrained ATST features. As a result, the CNN layers will be in-
sufficiently trained, which leads to some performance decaying. To
mitigate this problem, the training strategy of ATST-CRNN is setup
with the following steps:

• Train ATST using AudioSet;
• Train CRNN using DESED, with RCT;
• Concatenate ATST feature with CNN feature, and feed to new

RNN layers (with randomly initialized parameters);
• Retrain the whole model, using DESED, with RCT; The last

three transformer blocks of ATST and CNN layers are fine-
tuned.

3. EXPERIMENT

3.1. Feature extraction and training settings

All the audio clips are first re-sampled to 16kHz. As for the base-
line CRNN model (submitted system 1), each audio clip is trans-
formed into the short-time Fourier transform (STFT) domain with
2048 window length and 256 hop length. Then, 128-dimensional
log-mel feature is extracted as the network input. Each 10-second
sound clip is represented as a 626 × 128 mel-scale spectrogram.
The output dimension of CNN layers is 128, and the hidden size of
RNN layers is 256. As for the CNN branch and ATST branch in
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Table 1: Development set performance of models trained with or
without RCT. All the ATST models are the small version. In this ex-
periment, the last three transformer blocks are finetuned for ATST-
RNN, while they are frozen for ATST-CRNN.

Model PSDS1 (%) PSDS2 (%)

baseline CRNN 36.65 56.57
baseline CRNN + RCT 39.80 61.12
ATST-RNN 40.65 63.15
ATST-RNN + RCT 45.11 68.28
ATST-CRNN 41.42 63.12
ATST-CRNN + RCT 44.28 66.82

Table 2: Development set performance of ATST-RNN model with
freezing or finetuning the last three transformer blocks of ATST. We
use the small version of ATST. RCT is not used.

Pretraining strategy PSDS1 (%) PSDS2 (%)

ATST-RNN + freezing 39.52 63.52
ATST-RNN + finetuning 40.65 63.15

ATST-CRNN (submitted systems 2-4), the window length of STFT
are set to 2048 and 1024, and the dimension of log-mel feature are
set to 128 and 64, respectively. The hop length for both branches is
set to 160. Each 10-second sound clip is represented in the dimen-
sion of 1000×128 for the CNN branch and 1000×64 for the ATST
branch. There are two versions of ATST pre-trained model, i.e. so-
called small and base ATST models. The only difference between
them is that the small and base versions have a hidden dimension
of 384 and 768, respectively. Correspondingly, the fused feature
in ATST-CRNN has a dimension of 512 for the small version (128
from CNN + 384 from ATST), and 896 for the base version (128
from CNN + 768 from ATST).

The training configurations of ATST follow the settings pre-
sented in the ATST paper [7]. The training configurations of CRNN
or ATST-CRNN follow the settings presented in the RCT paper [8].
The hidden sizes of RNN layers in CRNN and ATST-CRNN are
set to 256 and 512, respectively. The temperature technique [16] is
adopted at the inference stage. And the temperature for all models
is set to 3. The prediction result is post-processed using the median
filters presented in [8]. We take both PSDS1 and PSDS2 [17] as
the SED performance metrics. The performances in the following
experiments are all applied temperature post-processing except for
the baseline CRNN models.

3.2. Performance of RCT for semi-supervised SED

We apply the RCT scheme to the baseline CRNN, ATST-RNN and
ATST-CRNN models, and the results are shown in Table 1. We
can observe that RCT is compatible with all the three models, as
it could lead to an at least 3% improvement in both PSDS metrics.
This verifies that RCT can have a better usage of the unlabeled data,
compared with the baseline MeanTeacher method.

3.3. Performance for combining ATST model

As for the usage of ATST features, we first test the ATST-RNN
model, as shown in Table 2. By replacing the CNN layers with

Table 3: Development set performances of ATST-CRNN models
trained with different strategies. The last three transformer blocks
of ATST are always finetuned. RCT is used.

Model PSDS1 (%) PSDS2 (%)

small ATST-RNN 45.11 68.28
small ATST-CRNN + scratch CNN 43.10 64.98
small ATST-CRNN + freezing CNN 45.77 68.24
small ATST-CRNN + finetuning CNN 46.04 69.75
base ATST-CRNN + finetuning CNN 45.99 70.65

Table 4: Final submitted system configurations as well as their per-
formance on the development set. TS, TM, FA and FM stand for
time shift, time mask, filter augmentation and frequency mask, re-
spectively.

Submissions Model RCT warping methods

System 1 baseline CRNN TS, TM, FA, FM
System 2 small ATST-CRNN TS, TM, FA
System 3 base ATST-CRNN TS, TM, FA
System 4 base ATST-CRNN multiple strategies

Submissions PSDS1 (%) PSDS2 (%)

System 1 39.80 61.12
System 2 46.04 69.75
System 3 45.99 70.65
System 4 47.71 73.44

the ATST model, ATST-RNN achieve better performance measures
compared with the baseline CRNN system, even when the ATST
model is frozen. This testifies that the ATST model pre-trained with
an out-domain dataset is indeed able to extract an meaningful audio
representation.

We then evaluate the concatenation of ATST feature and CNN
feature. In experiments, we investigate the usage of CNN feature
by either train-from-scratch or pre-trained then frozen or finetuned.
The results are shown in Table 3. We could find that, the models
with pre-trained CNN feature performs better than that with train-
from-scratch feature. With pre-trained and finetuned CNN feature,
ATST-CRNN noticeably outperforms ATST-RNN, which indicates
that the ATST feature and CNN feature are compatible to some ex-
tent. The performance can be slightly improved when replacing the
small ATST model with the base one.

3.4. Challenge submissions

From above experiments, we find the following facts: RCT is an ef-
fective semi-supervised learning strategy, combining ATST feature
and CNN feature is helpful, and proper model finetuning is nec-
essary for both the pre-trained ATST model and CNN layers. By
adopting RCT, ATST/CNN feature combination and model finetun-
ing, we propose our four submitted systems as: (i) baseline CRNN;
(ii) small ATST-CRNN; (iii) base ATST-CRNN; (iv) An ensemble
of five base ATST-CRNN systems. The detailed configurations are
shown in Table 4. System 4 ensembles 5 different systems varying
in training scheme and RCT audio warping strategies. To maximize
the differences among these models, in addition to system 3, we
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train four extra models with different freezing or finetuning strate-
gies.

We also notice that, the ATST model is ineffective for pro-
cessing very long audio clips, due to the computational complexity
of the computation of self attention. In evaluation, we split those
clips that are longer than 10 seconds into 10-second chunks with
2-second overlaps. The model predictions for these 10-second clips
are then re-unified with the logical OR operation. And then median
filters are applied for post-processing.

4. CONCLUSION

To conclude, in this work, we integrate the semi-supervised
sound event detection model (RCT), and the self-supervised model
(ATST). These two techniques allow us to use both in-domain and
out-domain data sources, which brings significant performance im-
provements on the baseline CRNN model.
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