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ABSTRACT

In this paper, we describe details about submitted systems for 
DCASE 2022 challenge task 4: sound event detection in domestic 
environments. We focus on how to effectively use a spectrogram 
as input for SED model since it has different time-frequency 
characteristics. Frequencies have various characteristics for some 
reasons like recording devices and type of sound event. 
Specifically, each time frame has different features from each 
other due to uncertainty on whether any sound event may happen 
or not in an audio clip and what type of sound event. Therefore, 
we propose a patch attention(PA) mechanism capturing 
patch-range dependencies across input sequences so that the 
model can learn by training with important local information. We 
use PA with efficient channel attention for learning important 
channels in feature maps.  In addition, we adopt a strategy called 
subspectral normalization (SSN), which split the input 
frequencies into multiple sub-groups and normalizes each group 
to stand out specific features. Experiments result on the DESED 
2022 validation dataset show that our proposed model 
outperforms the baseline system. Particularly, our model 
demonstrates improvement in performance on PSDS scores of 
0.4438 and 0.683 on scenario1 and scenario2 respectively.

Index Terms—patch-based attention, sound event 
detection, DCASE

1. METHOD

2.1. Patch-based Attention

In this section, we present patch-based attention (PA) for sound 
event detection. PA is the first spatial attention mechanism 
considering both frequency and time dimensions for sound event 
detection. The effectiveness of the attention mechanism in the 
audio domain has been sufficiently demonstrated by previous 
studies[10, 11]. But they take differences into account between 
frequencies in the spectrogram but time frames are not. In SED, 
only a few time frames of the whole patches have sound events, 
and they need to be emphasized differently than others. We 
consider frequency dimension and time dimension by using patch 
units. Because patch units contain local context information of 

frequency and time are suitable for sound event detection.
 Patch units are typically used to make an image transformer 
input embeddings in vision tasks such as token embeddings in 
NLP. Patches act like not only token embeddings but also local 
information units of frequency and time axis. We focus on the 
latter of the patch's role. 
 Figure 1 shows PA architecture. PA consists of two main 
processes: patch compression and expansion to a patch, such as 
squeeze and excitation attention mechanism [8]. The spectrogram 
is split into patches without overlapping. (patch compression) 
Each patch is changed to a compressed element of the patch's 
information. Elements use sigmoid to compute their importance. 
after that, they are no longer local context but their attention 
scores. (expansion to a patch) Multiply the attention score by the 
patch pair to highlight important local contexts, such as those 
involving sound events. The deeper the network, the smaller the 
functional map size along with the patch size. we use the set of 
patch sizes  [4, 4, 4, 4, 4, 2, 2].
 In our experiments, we use PA and ECA [9] together to pay 
attention to the spatial and channel dimensions of the feature map.

2.2. SubSpectral Normalization

Adopting SSN [12] is another way to align with our goal of 
utilizing local information in a spectrogram by training. 
SubSpectral Normalization (SSN) splits the input feature map into 
several groups along the frequency dimension and normalizes 
inter-groups. SSN overcomes the drawback of batch normalization, 
which can lose the unique characteristics of each frequency 
dimension because it performs equally in frequency and time 
dimensions. The experimental results are demonstrated in Table2.
As shown in the table, SSN makes superior performance for 
PSDS1 0.3862 and PSDS2 0.5999 than other techniques in the 
SED task.
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Model PSDS1 PSDS2
Baseline (CRNN) 0.3557 0.5664

double CRNN 0.4007 0.6152
double CRNN 

+ PA,ECA 0.4175 0.6631

Table 1. Results with network architectures and PA with ECA
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2.3. Network Architecture

We use a double-CRNN architecture that changes the baseline 
system model, CRNN, to double the width of the model. Simply, 
increase the channels of CRNN to double and use context gating 
as activation function instead of ReLU. Using SSN(G=4) and 
CNN output time axis pool 4x, and to fit the feature map to the 
patch size, the CNN's padding size is [2, 2, 2, 1, 1, 0, 0] and the 
CNN's pooling is the size is [ [2,2], [2,2], [1,2], [1,2], [1,2], [1,1], 
[1,4] ].

2. EXPERIMENTS

2.1. Dataset and Feature Extraction

All of our experiments are conducted on the DCASE 2022 
challenge task4: sound event detection in domestic environments. 
The dataset is composed of 10-sec audio clips, 10 classes of 
sound events and consists of four types of datasets: strong-labeled 
synthetic dataset contained 10000 clips, strong-labeled real 
dataset contained 3470 clips, weakly-labeled real dataset (only 
have sound event labels) contained 1578 clips, and unlabeled real 
dataset contained 14412 clips. Real datasets are from the 
Audioset and sytnthetic dataset are generated with the Scaper 
soundscape synthesis and augmentation library. Audio was 
resampled to 16 kHz and log mel spectrograms were extracted 
using the same options as the baseline system, a 2048 window 
with 256 hop lengths, 128 mel bins. As a result, the shape of input 
feature for the DCASE model is 1x128x625.

2.2. Experimental Settings.

The network is trained by the mean-teacher method of 
semi-supervised learning to effectively learn unlabeled dataset. 
We employ three data augmentation methods: mix-up[6], 
time-shifting, and frequency masking[15] to make the training 
dataset more diverse which improves model performance. The 
first two are used commonly, the last one is only used for the 
ensemble. Unlike the rest, frequency masking applies only 
student model because it does not change the label. Train the 
network with the Adam optimizer (max lr= 0.001) and 
exponential warmup learning rate scheduler. we apply the BCE 
loss to the supervised loss for strong, weak labels and the MSE 
loss for the self-supervised loss between teacher and student 
model’s prediction.

3. RESULTS 

The performances of the submitted systems are demonstrated in 
Table 3. All submitted models use the same network architecture, 
double-CRNN, along with PA and ECA. The results for an 
ensemble of six models trained only on the training dataset are 
the best. (PSDS1 0.4438 and PSDS2 0.683) However, the model 
could not be submitted because an error occurred during 
evaluation. Model 1 is a three-model ensemble. Different models 
have different augmentation methods applied and whether or not 
strong labeled real data is used. Model 2 is a single model trained 
by only training set and mix-up, time-shifting applied for data 
augmentation. Models 3 and 4 were trained by integrating the 
validation dataset into the training dataset.Model 3 is a two-model 
ensemble trained by different parameters (data augmentation, 
mixup rate). The last model 4 is a five-ensemble from different 
two model's top-2, top-3 checkpoints. 

Type PSDS1 PSDS2
Batch Norm [13] 0.3557 0.5664
Group Norm [14]

(G=16) 0.3809 0.5927

Instance Norm [15] 0.357 0.578
Subspectral Norm

(G=4) 0.3862 0.5999

Table 2. Results of normalization techniques with baseline model.

Model Training Ensemble PSDS1 PSDS2
double 
CRNN Training set 3-model 0.434 0.675

double 
CRNN Training set single 0.422 0.667

double 
CRNN Full set 2-model 0.494 0.748

double 
CRNN Full set 5-model 0.48 0.726

Figure 1. The architecture of the proposed PA
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