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ABSTRACT 

This report describes the Sound Event Detection (SED) system for 
DCASE2022 Task4. We focused on combining data augmentation 
techniques for the SED mean-teacher system and selecting 
trainable samples from AudioSet. The neural architecture follows 
the baseline CRNN model, but a frequency dynamic convolution 
replaces each convolution layer except the first one. The cost 
function was also constructed identically to the baseline, but an 
asymmetric focal loss was used instead of binary cross-entropy for 
training the AudioSet. The best metrics in the validation set of our 
experiments were 0.473, 0.723 for PSDS 1 and 2, and 56.9% for 
color-based F1 scores. 

Index Terms— DCASE 2022, sound event detection, 
data augmentation, mean-teacher, AudioSet, frequency dy-
namic convolution, asymmetric focal loss 

1. INTRODUCTION 

In Detection and Classification of Acoustic Scene and Event 
(DCASE), research on Sound Event Detection (SED) is in pro-
gress for classifying and localizing acoustic events. In particular, 
task 4 aims to detect the activation of ten domestic sound events 
[1]. 

The most appropriate dataset for training SED models is 
strongly labeled data, consisting of class labels with their 
timestamps. However, annotating the timestamp of sound events 
is costly and likely to contain many errors, so it is difficult to ob-
tain a sufficient amount of data for training. Therefore, Turpault et 
al. proposed a heterogeneous dataset that uses weakly labeled and 
unlabeled data together for training [2]. It was proved that the pro-
posed dataset can further improve the SED mean-teacher model. 

In this report, we propose a data augmentation pipeline and a 
strongly labeled external dataset from AudioSet to enhance super-
vised training on strong data. 

2. BACKGROUNDS 

2.1. Frequency dynamic convolution 

The frequency dynamic (FDY) convolution is designed to obtain 
important features in different frequency domains [3]. It consists 
of multiple kernel basis and their attention weights. The weighted 
sum of basis kernels implies the weighted sum of features found 

in the spectrogram with frequency-wise attention. All the systems 
we submitted have a neural architecture composed of FDY convo-
lutions. 

2.2. Asymmetric focal loss 

Asymmetric Focal Loss (AFL) has been proposed to solve the 
data imbalance problem between active and inactive frames in 
multi-class SED [4]. Compared to the long-duration events (e.g., 
electric shaver and vacuum cleaner) and inactive durations, the 
short-duration events (e.g., cat, dishes, and dog) have complex 
patterns but less active frames, making it difficult for the model 
to learn those features. Therefore, the idea is to calculate the focal 
loss [5] separately weighted for active and inactive, respectively. 
The following equation describes the AFL: 

𝐴𝐹𝐿(𝑝) = (1 − 𝑝)!𝑦𝑙𝑜𝑔(𝑝) +	𝑝"(1 − 𝑦) log(1 − 𝑝),											(1) 

where 𝑝 is the output probability, 𝑦 is ground-truth, 𝛾 is the fo-
cusing parameter for active samples, and 𝜁 for inactive samples. 
We replaced binary cross-entropy (BCE) with AFL as a super-
vised loss in training system 3, where the additional data was in-
cluded for training. 

3. DATA AUGMENTATION PIPELINE 

We constructed a data augmentation pipeline to effectively train a 
limited amount of strong labeled data, as shown in Figure 1. Fur-
thermore, to maximize the training effect of the mean-teacher, we 
added more noise augmentations to the student model input. The 
following subsections contain details of each data augmentation 
technique. 

Figure 1: Data augmentation pipeline overview 
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3.1. Time shifting and time masking 

The intention of utilizing time shifting and time masking is to 
avoid unintended memorization by temporal position. A few 
frames of data and labels were shifted and masked randomly. 

3.2. Mixup 

Mixup is a technique to add-up two samples and labels in a spe-
cific ratio [6]. This was initially invented for image classification 
but is also viable in the audio domain. By adding two samples, the 
result becomes one sample with two sound events. Furthermore, 
mixup generates more non-zero frames for training by overlap-
ping inactive frames with other active frames. 

3.3. Add noise 

Musan is a dataset including various noise samples and consists of 
speech, music, and noise categories by its source. Thus, many 
speech domains are using it for adding noise to training samples 
[7]. However, it is undesirable to utilize the speech and noise cat-
egories considering the interference with the feature learning of 
the targeting classes of DESED. We randomly added music noises 
to sample while training systems, except for the one system that 
trained only with internal sets. The random noise was added in 
case of internal set training. 

3.4. FilterAugment and SpecAugment 

FilterAugment randomly increases or decreases the frequency 
band energy of the spectrogram to mimic different acoustic envi-
ronments. According to Nam et al., this acoustic environment re-
fers to the physical objects surrounding the sound source, various 
types of receivers, and the air as the medium of waves [8][9]. We 
applied a linear type of FilterAugment to obtain more natural aug-
mentation results. 

SpecAugment [10] located at the end of the pipeline was in-
troduced for frequency masking. Since the regularization effect is 
sufficient on the temporal axis, the time mask and time stretch 
were not activated. 

4. AUDIOSET DATA SELECTION 

AudioSet is an ontology and a dataset for numerous acoustic 
events. The provided annotations include both weak and strong la-
bels [11][12]. We were interested in the data split named 
"train_strong" to supplement the strong labeled data. Our intui-
tions for utilizing AudioSet were: (1) both datasets are sourced 
from YouTube, (2) both have classes with the same labels (e.g., 
Blender, Cat, Dog, Electric shaver, Vacuum cleaner, etc.), and (3) 
some classes in DESED group several classes from AudioSet (e.g., 
Bow-wow and Bark are grouped to the Dog, etc.) 

Since it is not clear whether the class definitions of the two 
datasets are the same, we tried to find useful samples from Audi-
oSet by examining the prediction scores of the pretrained model. 
For each class, frame-level prediction scores were micro-averaged 
to calculate confidence scores for corresponding DESED classes. 

 
1 https://github.com/DCASE-REPO/DESED_task/tree/master/recipes/ 

dcase2022_task4_baseline 

When the Top-1 confidence score exceeded 0.3, the class is rela-
beled with the corresponding DESED label and included in the 
trainable data. After pruning some unreliable and misclassified 
classes by hand, we selected 500 samples per class to avoid class 
imbalance. In conclusion, 4,395 samples were selected as trainable 
data, and the number of samples per class is shown in Table 1. 

Table 1: Number of selected AudioSet samples 

Class samples 
Alm 500 
Bld 373 
Cat 500 
Dish 500 
Dog 500 
Shv 369 
Fry 500 
Wtr 359 
Spch 500 
Vcm 294 
Total 4395 

 

5. EXPERIMENT METHODS 

5.1. Datasets and feature extraction 

The official development set of DCASE2022 provided three het-
erogeneous datasets for training: 10,000 of strongly labeled, 1,578 
weakly labeled, and 14,412 unlabeled in-domain data. Both 
weakly and unlabeled data were real audio, but strongly labeled 
one was synthesized data with Scaper [13]. We used whole official 
sets for training all systems. For the training system2, we included 
additional 3,470 clips with strong labels as external data. These 
data were real-world audio and were provided with the baseline 
system1. In the case of training system 3, we introduced 4,395 ad-
ditional data from section 4, which was selected from AudioSet. 
Finally, we included a validation set for training the submission 
version of each system. 

We prepared samples as mono audio with a 16 kHz sampling 
frequency for our experiments. Each audio was converted to a 
spectrogram by skipping every 256 samples with a 2048-length 
window, and each spectrum was aggregated into 128 Mel fre-
quency bins. The extracted filter banks were converted to the log 
scale and applied min-max scaling. 

5.2. Neural architecture 

The neural architecture in this experiment follows the baseline sys-
tem in its overall structure. The CNN structure of the model con-
sists of 7 convolution blocks, and the number of filters is [32, 64, 
128, 256, 256, 256, 256], respectively. The first block has a basic 
2D convolution layer, followed by six blocks of FDY convolution. 
Additionally, all convolution blocks use a weighted sigmoid gate 
[14] as an activation layer and a dropout rate of 0.5. The average 
pooling layer is used for temporal and frequency pooling, and the 
size is [[2, 2], [2, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2]], respectively. 
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The RNN structure is two layers of 128 bidirectional gated recur-
rent units. The linear layer follows the RNN with sigmoid activa-
tion for strong predictions. The output for weak prediction uses a 
linear softmax to aggregate the strong predictions with class-wise 
weighting [15]. 

5.3. Optimization 

The model was trained with Adam optimizer with a maximum 
learning rate of 0.001. We applied 50 epochs of the ramp-up and 
450 epochs of decay strategy to the learning rate scheduler. 

For the supervised loss, we used BCE for both weak and 
strong predictions; but we used the AFL instead of BCE for system 
3. We introduced a weighting factor of 0.1 to weak BCE loss to 
reduce the impact of gradients produced by weak predictions. We 
used a mean-squared error (MSE) as the consistency loss for weak 
and strong predictions. 

5.4. Post-processing 

We applied a temperature to the sigmoid function in inference 
phase. Zheng et al. claimed that applying the temperature parame-
ter 𝑇 to the sigmoid function could reduce the polarized distribu-
tion of the prediction result [16]. Therefore, we used a temperature 
of 𝑇 = 3 for the inference process, which led to a slight perfor-
mance improvement in both PSDS scenarios 1 and 2. 

Additionally, we applied different lengths of median filters 
per event to smooth the prediction results. Delphin-Poulat et al. 
claimed that the duration of the different sound events varies from 
one event to another [17]. Accordingly, we divided into two 
groups, long-duration and short-duration events, by a mean dura-
tion of 3 seconds. We tuned median window length towards max-
imizing PSDS1 applying different search spaces to each group. 

For system 4, we applied a specific post-processing method, 
called weak SED. System 4 is not a sole model but is made from 
the predictions of System 3 with the weak SED processing. This 
method, proposed by Nam et al., has a strong positive effect on the 
PSDS2 by setting timestamps of the weak prediction to the entire 
duration of audio [8]. Therefore, it can be helpful when predicting 
sound events whose localization is less important. 

6. RESULTS 

The in-lab results for the proposed systems on the official valida-
tion dataset are shown in Table 2. The submitted version of each 
system includes the validation set as training data, and the predic-
tion results are ensembles of six random checkpoints between 250 
and 500 epochs. 

Table 2: Metric results for the official validation set 

System PSDS1 PSDS2 CB-F1 
Baseline 0.336 0.536 40.1 

Baseline (AudioSet strong) 0.351 0.552 42.9 
Baseline (AST) 0.313 0.722 37.2 

Zheng et al. [16] 0.454 0.671 52.4 
FDY-SED [3] 0.452 0.67 53.3 

System1 0.424 0.649 51.0 
System2 0.473 0.723 56.9 
System3 0.445 0.704 54.5 
System4 0.063 0.814 19.3 
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