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ABSTRACT

Few-shot learning is introduced to reduce the requirements of data
availability in machine learning, especially when the labelling is
labour expensive. Few-shot learning algorithms usually suffer from
the extraordinary feature distribution of the query class, especially
in few-shot bioacoustic event detection task. In this work, Knowl-
edge transfer technique is introduced into the transductive inference
process to restrict the feature distribution of newly appeared class
to a dedicated sub-space, while adapts the feature distribution for
existing classes. The proposed system outperforms the traditional
few-shot learning system according to the development dataset pro-
vided by bioacoustics event detection (Task 5) in DCASE data chal-
lenge 2022. The f-measure score of the validation in development
dataset successfully reaches 57.40.

Index Terms— Few-shot Learning, Sound Event Detection

1. INTRODUCTION

As the development of deep learning, neural networks have been
applied to solve various problem in reality. Due to the limited
manual labour in data annotation, Few-shot learning [1, 2] has be-
come a promising paradigm to satisfy the task needs under the lim-
ited labelled dataset, such as few-shot bioacoustic event detection
task. Few-shot learning is expected the model to acquire the ability
to predict the class of queried sample from few labelled samples.
Common few-shot learning task can be represented as K-way N-
shot task which means there are K and N labelled samples for each
class provided in support set. The K classes are usually newly ap-
peared to the classes from training set and the prediction of query
set are limited to these K classes. Few-shot bioacoustic event de-
tection task can be considered as a unique One Class Classification
(OOC) task, which provides few labelled positive samples and sev-
eral labelled negative noise samples.

The main barriers of few-shot learning are how to avoid the ex-
traordinary feature distribution of newly appeared classes and the
feature bias of support set caused by sparse and limited data. The
extraordinary feature distribution means that features of these newly
appeared classes samples are hard to follow a stable and predictable

distribution, as the classes of support set are brand new to the trained
model. Especially in few-shot bioacoustic event detection task, the
negative noise samples do not have the stable natural pattern which
lead to a worse extraordinary feature distribution. At the same time,
the few labelled samples in support further increase the bias be-
tween the posterior distribution and real distribution of these newly
appeared classes. Prior methods based on inductive inference meth-
ods [3–9] are expected to generalise a robust model through some
training design, such as meta learning. Unfortunately, since induc-
tive inference methods are limited to scope of training dataset, they
can not well solve the two problems above. Recently, transductive
inference methods [10–13] are proposed to take the prediction of
all queried samples as an integral process instead of one sample at
a time in inductive inference. This idea can utilize the extra data in
query set to modify the original model to optimize the posterior dis-
tribution of newly appeared classes through some regulariers. How-
ever, existing transductive inference methods still facing the fitting
problem of the extraordinary feature distribution of newly appeared
classes. Large-scale parameters updating [11] during transductive
inference tend to fall into the overfitting problem, while limited pa-
rameter updating [10] or graph clustering methods [12] are hard
to well fit the extraordinary feature distribution of newly appeared
classes.

In this work, the knowledge transfer idea is introduced to solve
the extraordinary feature distribution problem in few-shot learning.
Knowledge transfer idea is aimed at transferring extra information
into a new task to refine the model. The proposed knowledge trans-
fer method construct a dedicate feature sub-space to restrict the fea-
ture distribution of newly appeared classes through transferring the
pre-trained classes distributions into transductive inference process
as the anchor points to preserve the pre-trained knowledge.

We use the Prototype Network [4] as the pre-trained model and
construct a new task adaptive feature extractor to replace part of
neural layers in Prototype Network for prediction of each few-shot
task. During the re-training process, we load the prototypes of train-
ing dataset as the prior knowledge of original space, and encourage
the output of task adaptive feature extractor to keep the same weight
of original model in order to align the original feature space of the
pre-trained model and our new task adaptive feature extractor. The
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parameters updating of task adaptive feature extractor will tend to
preserve the original knowledge from pre-trained model and avoid
the overfit problem. Furthermore, we also introduce the regularier
of maximizing mutual information [10] and cross-entropy classi-
fication loss to optimize the task adaptive feature extractor. The
experiments are conducted on the development dataset of DCASE
2022 Task5. Each audio file is considered as an individual few-shot
bioacoustic event detection task. The general result of f-measure
(57.40) is in line with our expectations which shows a significant
improvement on prior methods as well as the official baseline.

Section 2 is the motivation of our design and the problems of
other transductive inference methods. Section 3 is the general intro-
duction of the proposed method. Section 4 contains all the details
and results of our experiments.

2. MOTIVATION

The applications of Few-shot Bioacoustic Event Detection tend to
deal with one specific biology detection as the positive class, while
all other irrelevant acoustic event and noise are considered as nega-
tive class. This one class classification scenario bring a huge barrier
to few-shot learning. Labelled negative samples in support set can
not be guaranteed to belong to the same acoustic event, and even the
negative samples in support set and query set are belong to an iden-
tical data distribution. The inconsistent data distribution between
support set and query set make it hard to generalize the model from
the support set to query set through meta-learning methods in in-
ductive inference.

In the premise of accuracy first, the introduction of transductive
inference is necessary to enable model to adapt different few-shot
tasks. However, existing transductive inference methods still can
not well solve the one class classification in few-shot learning. The
mainstream idea of transductive inference is use a regularizer to up-
date the model in a limited latent space. Fine-tuning the whole pre-
trained network [11] is a well performance method as a baseline
in transductive learning although it requires a long run-time. The
balance sample amount of each class in support set and the signifi-
cant feature pattern of different classes are the keys to prevents the
fine-tuning method from overfit problem. Both of them are not sat-
isfied in our task so that the pre-trained network is fragile and will
happily overfit during fine-tuning. TIM [10] has also found that the
updating of whole pre-trained network may easily go overfit and
drop the model performance, which leads TIM [10] only to update
the classifier by maximizing the mutual information as the regu-
larizer. Although updating the linear classifier prevents the overfit
problem during transductive inference, the improvement of these
methods in our task is limited by the linear classifier. Due to the
diversity of negative samples, the boundary between positive and
negative class tend to be a non-linear plane as the left sides showing
in figure 1. The the upper bound of accuracy of one class classifi-
cation is limited to the feature distribution of the query set, which
has been determined by the feature extractor of pre-trained model.
Based on the above issues, we propose a new transductive infer-
ence method to construct a new task adaptive feature extractor that
can effectively solve the overfit problem. We utilize the pre-trained
knowledge to align the feature space of new task adaptive feature
extractor and original pre-trained feature extractor, which success-
fully prevent the overfit problem due to the limitation of the latent
space of the task adaptive feature extractor updating. As a result,
our model only need to update the non-linear task adaptive feature
extractor to mapping the queried samples into the proper positions

updating
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Pre-trained Network Classifier

Positive samples
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Transductive Inference by 
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Transductive Inference by 
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Figure 1: The feature space of different methods

in feature space instead of adjusting the linear classifier, as the right
side showing in figure 1.

3. METHOD

3.1. Few-shot Scenario

Starting from the common few-shot setting, the training dataset
Xtrain = {(xi, yi)|yi ∈ Ytrain} is a large scale of labelled dataset,
where xi is a audio clip, yi is the corresponding event category and
Ytrain is set of all categories in training dataset. Through splitting
the whole audio files into several clips, the event detection task can
be convert to a classification task. The testing set is consisting of a
support set Xs = {(xi, yi)|yi ∈ Ys} and a query set Xq = {xi},
where Ys is the set of categories in testing set. It is worth to note
that the categories of training set and testing set do not overlap with
each other, Ytrain ∩ Ys = ∅. In common few-shot learning sce-
nario, the support set is randomly sampled from the whole testing
set and only contains few samples with labels acting as reference to
the prediction of unlabelled query set. Specifically, a few-shot task
can be referred to K-way N-shot task indicating that the support set
consists of N labelled samples randomly sampled from each of K
classes. The data amount of support set is N ·K for a K-way N-shot
task. Few-shot learning techniques will use the training set Xtrain

to training a model with can introduce support set into prediction
process to adapt the query set at hand.

Different from common few-shot setting, in our Few-shot Bioa-
coustic Event Detection task, the support set Xs consists of 5-shot
positive samples, which is the target bioacoustic event audio clips,
and several negative samples. In another word, this scenario can be
viewed as a 1-way 5-shot one class classification task with several
negative samples in support set.
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Figure 2: An overview of the proposed model.

3.2. Architecture

3.2.1. Feature Extractors Introduction

As the 2 shows, there are total three defined feature extractors in the
architecture of our model, the surface feature extractor Fs(·|θs),
deep feature extractor Fd(·|θd) and task adaptive feature extractor
Ft(·|θt), which all consist of several convolution layers. We ar-
tificially split a pre-trained model as the Surface and deep feature
extractor and construct a new randomly initialized feature extractor
as the Transductive Feature Extractor.

We suppose that the surface convolution layers in pre-trained
model can only observe local information with limited view size so
that the extracted surface features are relatively robust to any tasks.
The deeper convolution layers in pre-trained model have a wider
view of input mel-spectrum and learn more abstract feature corre-
sponding to specific acoustic event, such as the the relationships
between different time steps with various peaks of power. Based
on these assumptions, the surface feature extractor Fs(·|θs) will be
fixed and directly used during the evaluation process. The deep
feature extractor Fd(·|θs) will be replaced by the Transductive Fea-
ture Extractor Ft(·|θt) to extract the task adaptive feature during the
evaluation. This design avoid updating the whole pre-trained model
that accelerate the run-time of transductive inference. At the same
time, through align the feature space of Ft(·|θt) and Fd(·|θs), less
parameters updating design will reduce the probability of overfitting
with less data requirement in query set.

3.2.2. Pre-trained Model

As our proposed transductive inference method will not involve in
the training process, we use Prototype Network [4] as a specific pre-
trained model on training set for a better comprehension. In brief,
Prototype Network is a feature extractor that take the center of the
embedding features of same classes samples in support set as the
corresponding classes prototypes. The queried sample can be pre-

dicted through calculating the distance between its embedding fea-
ture and each class prototype, where the nearest class prototype is
the result of prediction. In our work, we divide Prototype Network
into two parts surface feature extractor Fs(·|θs) and deep feature
extractor Fd(·|θd) as the figure 2 shows. This division will not in-
fluence the training process of Prototype Network:

f = Fd(Fs(x|θs)|θd) (1)

argmin
θs,θd

−yc log
exp(−dϕ(f, vc))∑

c′∈C
exp(−dϕ(f, vc′))

(2)

where C is the classes set in training process, dϕ is the distance
function (L2 distance here) and vc is the prototype (center point)
of class c in feature space. After training with meta learning tech-
nique, the Prototype Network will act as the pre-trained model in
our following transductive inference process.

3.2.3. Feature Space Alignment

For each single few-shot task, the testing set will provide a batch
of extra samples consist of few labelled samples (Support Set) and
several unlabelled (Query Set). We construct a Transductive Feature
Extractor Ft(·|θt) to extract the task adaptive feature according to
the information brought by testing set which will replace original
deep feature extractor Fd(·|θd) during testing process. The struc-
ture of Transductive Feature Extractor can be of any non-linear
mapping function that can be back-propagated. In our work, we
drop one convolution layer based on Fd(·|θd) structure as the Trans-
ductive Feature Extractor with randomly parameter initialization.

The re-training of Ft(·|θt) in transductive inference process
will easily lead to a overfit problem with traditional cross-entropy
classification loss due to the few labelled samples in support set. To
solve this problem, we propose a feature space alignment method
to transfer the original knowledge from Fd(·|θd) to Ft(·|θt). We
concatenate the new prototypes retrieved from support set and all
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the classes prototypes of training dataset as a prototype bank W ∈
R(k+m)∗z , where k is the number of classes in support set, m is the
number of classes in training dataset and z is the dimension number
of deep feature f . The prototype bank W can be considered as the
classifier in pre-trained model, as the distance with each prototype
represent the weight of each class. For the sample x in both support
set and query set, we align task adaptive feature space with original
deep feature space and as following:

q = Fs(x|θs) (3)

f = Fd(q|θd), f ′ = Ft(q|θt) (4)
ŷ = softmax(dϕ(W, f)/t) (5)

y′ = softmax(dϕ(W, f ′)) (6)

Ldis = − 1

N

N∑
i

m+k∑
j

ŷi[j] log y
′
i[j] (7)

where N is the batch size, t is a temperature coefficient, y′, ŷ ∈
Rm+k, y′[j] means the jth dimension of y′ and dϕ is the L2 dis-
tance here. Ldis encourage the task adaptive feature of each sam-
ple has the identical weight with deep feature to each prototypes.
This alignment method can transfer the pre-trained knowledge in
Fd(·|θd) to Ft(·|θt) through the task samples from both support set
and query set.

3.2.4. Task Adaptation

We introduce the cross-entropy classification loss and regularier Lm

of maximizing the mutual information [10] to adapt the specific
few-shot task.

The cross-entropy classification Lc loss only involves the data
in support set:

Lc = − 1

Ns

Ns∑
i

m+k∑
j

ysi [j] log y
′
si [j] (8)

(9)

where Ns is the batch size of support set data and ysi is the label of
sample i in support set.

The regularier Lm of maximizing the mutual information only
involve the data in query set:

y′′
q = softmax(dϕ(W [: k], f ′)) (10)

ȳ′′
q =

1

N −Ns

N−Ns∑
i

y′′
qi (11)

Lm =

k∑
j

ȳ′′
q [j] log ȳ′′

q [j]−
1

N −Ns

N−Ns∑
i

k∑
j

y′′
qi [j] log y

′′
qi [j]

(12)

where W [: k] ∈ Rk∗z is all the prototypes of support set and N is
same with the batch size in equation (7). The Lm is aimed at maxi-
mizing the mutual information of Xq, Yq , which can be considered
as:

−I(Xq, Yq) = −H(Yq) +H(Yq|Xq) (13)

where terms corresponds terms in Lm.

3.2.5. Optimizing

The total loss of transductive inference optimizing is:

argmin
θt

αLdis + βLc + γLm (14)

where α = 0.85, β = 0.07, γ = 0.08 in our experiments.
The Transductive Feature Extractor Ft(·|θt) will be updated

following Adam optimizer with 1e-4 learning rate for 10 epoches.

3.2.6. Evaluation

During Evaluation, we drop the prototypes of training set and use
task adaptive feature to calculate the distance of prototypes of sup-
port set. The class of nearest prototypes is the prediction result.

4. EXPERIMENT

4.1. Dataset

All used data belong to the dataset of DCASE 2022 task5. The
training dataset of DCASE 2022 task5 consists of five sets of au-
dio files deriving from a different source each. For evaluation, each
audio file will be considered as an independent few-shot task while
various audio files make up the evaluation set. Each evaluation au-
dio file will be annotated the earliest 5 target event segments as the
positive samples and the rest segments before the end of the fifth
positive segment are labelled as negative samples.

4.2. Settings

For the training process, we adopt the same setting of baseline dur-
ing our pre-trained model training. The audio clip segment follows
0.2s segments length and 0.1s hopping length for training dataset.
We use the Short Time Fourier Transform with 22.05kHz down
sampling rate, 1024 window size and 256 hop size to extract the
128 dimensions mel-spectrum. The training dataset will be divided
as 0.9 and 0.1 for training and validation. We train the the prototype
network for 50 epochs and choose the best model in validation as
the pre-trained model.

For transductive inference, we construct two convolution layers
as the task adaptive feature extractor. The Adam optimizer is used
for re-training the task adaptive feature extractor with learning rate
0.0001 for 10 epochs. Due to the segment size of each file in eval-
uation set are not constant, we split each samples’ mel-spectrum
as a group of 17x128 mel-spectrums, which is same with the mel-
spectrum size in training process, to do the data augmentation.

4.3. Experimental Results

The metrisc for evaluation are the event based F-measure, precision
and recall. Table 1 shows the result of our model and the competi-
tors. Baseline (official) is based on prototype network [4] and the
result is provided by DCASE community. Baseline is also the pro-
totype network but trained by ourselves. TIM [?] is one of the state-
of-the-arts transductive inference method, which utilizes maximiz-
ing the mutual information to update the classifier. Our model is the
model using the given parameters (α = 0.85, β = 0.07, γ = 0.08).
Our model (ablation) is the ablation study result with parameters
(α = 0.85, β = 0.07, γ = 0). Our model (best) is the best result of
experiments of our model after the fine tuning process of parameter
(α = 0.854, β = 0.067, γ = 0.79).
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Table 1: The experiments results.

Model Precision Recall F-measure

Baseline(official) 36.34 24.96 29.59

Baseline 33.09 43.65 37.64

TIM 52.21 40.46 45.59

Our model 64.46 47.90 54.96

Our model (ablation) 66.95 43.71 52.89

Our model (best) 67.92 49.69 57.40

The results of our model shows that effectiveness of the pro-
posed framework and the ablation study results indicate that the
mutual information regularier is benefit to our model but not the
major factor of the huge improvement of our model.

5. CONCLUSION

In this report, we analyze the problems of existing transductive
methods when facing the extraordinary feature distribution of newly
appeared classes. Then we propose a new transductive inference
framework that introduce the knowledge transfer techniques to re-
strict the feature distribution of newly appeared classes in a dedicate
sub-space. This design effectively alleviate the overfit problem of
large-scale parameter updating in transductive inference and well
limited the feature distribution of newly appeared classes in few-
shot learning task, which shows a great performance in DCASE
2022 task5.
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