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ABSTRACT

This report describes our submissions to the DCASE 2022 chal-
lenge Task 2 ”Unsupervised Detection of Anomalous Sounds for
Machine Condition Monitoring under Domain Shifted Conditions.”
Acoustic-based machine condition monitoring is a challenging task
with a very unbalanced training dataset. Moreover, due to domain-
shift, testing data may come from a different distribution than the
training data, which makes the task even more difficult.

In this submission, we propose two novel extensions of
anomaly detection based on the reconstruction of auto-encoder
(AE) network. The first approach uses the raw difference between
AE input and its reconstructed output (instead of typical recon-
struction error based anomaly detectors). The second approach ex-
tends the first approach with an additional anomaly score of auto-
encoder’s latent vectors. The combination of these two anomaly
scores is then used to determine the final anomaly score.

Index Terms— Predictive Maintenance, Anomaly Detection,
Auto-encoder, OpenL3

1. INTRODUCTION

Machine condition monitoring is an essential component of predic-
tive maintenance. It allows to schedule maintenance work to fix
machine problems in the earliest stages and thus reducing mainte-
nance costs and preventing consequential damages. Acoustic emis-
sion monitoring can be used for machine condition analysis and
prognosis. ISO 220961 suggests that the nature of acoustic emis-
sions can be used even without an understanding of the operating
mechanics of the monitored machine.

The recent progress in AI allows us to create an automatic ma-
chine condition monitoring system. However, most of the AI meth-
ods require a huge amount of well-labeled examples, which makes
them difficult to apply for machine condition monitoring tasks,
where, it is often impossible to collect all failures. The reason for
the lack of the data is that each machine failure may sound slightly
different, and in order to have many sounds of broken machines,
we need to have many broken (often very expensive) machines. In
practice, it is exceptional to get even a few examples of a failed
state.

Additionally, due to the machine’s different operating statuses
or just the machine’s wear-and-tear, the emitted nominal sounds
may shift, which is called domain-shift. This introduces an addi-
tional complexity to the problem, because training data may not
even contain some specific machine statuses (e.g. speed, configu-
ration). Therefore, AI approaches must be capable of generalizing

1https://www.sis.se/api/document/preview/908883/

from the available data. The Task 2 in DCASE2022 challenge is set
up very realistically, meaning that (i) only nominal data are avail-
able for training and (ii) contains domain-shift.

Among several options, we chose to use reconstruction-based
anomaly detector with auto-encoders (AEs). AEs learn to recon-
struct the input features using smaller latent space. For AEs to be
able to reconstruct well the input, it must reasonably encode its in-
puts into the latent space, which means extracting important infor-
mation about the sounds. We use reconstruction together with the
intermediate latent space as inputs to classical anomaly detectors
(KNN, LOF) to obtain anomaly score, described in details in the
next sections.

2. OUR APPROACHES

We used pretrained OpenL3[1, 2] neural network to convert audio
embedding space, over which we continue with trained our auto-
encoders, as described in Figure 1. In detail, each audio sample is
converted with OpenL3 into 26 matrices mi of shape 96×6144. We
compute mean µ and σ of matrices m1, . . .m26, and concatenate
them x = ⟨µi, σi⟩ into a single vector for an input into the auto-
encoder. Auto-encoder parametrized with θ learns to reconstruct
the input x in its output x′ = θ(x) using a smaller intermediate
latent space (32 dimensional in our case). Formally, minimizes

argmin
θ

||X − θ(X)||2

In [3], Lehtinen et al. describe that every auto-encoder actually
works as denoising auto-encoder. Thus the reconstruction error is
not influenced only by the anomalies but also by the noise, which
is significant in DCASE domains. Therefore, we propose to use
the difference δ = x − θ(x) as new feature vector, on which we
want to detect anomalies. δ is processed with PCA to reduce its
dimensionality to 30. Afterwards, Local Outlier Factor (LOF), or
KNN, is used to get the actual anomaly score. Average of anomaly
scores of all 26 chunks for single sample produces final anomaly
score in our first approach, called AEDiff.

Our second approach, DADAED extendes AEDiff by adding
second anomaly detector (LOF, or KNN), which detects anomalies
on the intermediate latent vector. The two anomaly scores (one
from AEDiff and one from the new anomaly detector) are then
probabilistically combined with disjoint OR operator P (A or B) =
1− (1− P (A))(1− P (B)).

Our approaches use one model for all domains (except valve
domain) to prevent overfitting. We do not use any information about
domain shift, which increases applicability of our approach (such
information is not always available).
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Figure 1: Scheme of the anomaly detection model. The dotted part
shows how the AEDiff model is extended by a second anomaly de-
tector – this extension is called DADAED (Double Anomaly Detec-
tor AEDiff). Numbers show the dimensions of vectors.

Figure 2: Tick onset detection in valve sounds. Comparison of
power spectrogram calculated from one sample with onset strength
envelope.

3. MODEL FOR VALVES

The valve sounds are significantly different from the sounds of other
machines. Most of the valve sounds are noise with only a few tenths
of a second containing the relevant sound where the valve is open-
ing or closing. Thus, all above described models failed to detect
anomalies with AUC below 55 %.

Therefore, we designed a special model for valves, which cal-
culates the energy of the opening and closing valve sounds. Dur-
ing exploratory data analysis, we found a loss of energy at around
4 – 8 kHz in the valve ticks in anomalous samples. The hypothe-
sis is that this change in sound might correspond to the simulated
anomaly condition – a small piece of paper caught in one or more
of the valves.

The algorithm for detecting and isolating the valve’s ticking
sounds consists of the following steps:

• calculating the Short-time Fourier transform,
• high-pass filtering with a cut-off frequency of 4 kHz,
• ticks onset detection,
• selecting the entire sound of each tick with a fixed window

(0.25 second).

For the onset detection, we used algorithms from the librosa
package – spectral flux onset strength envelope and peak finding in
an onset strength envelope. A threshold was set to find only relevant
peaks in the strength envelope (see Figure 2).

The energy of each windowed tick was then calculated and
averaged for the entire 10-second long sample. The negative en-
ergy was used as the anomaly score. This model outperformed all
other models on the development dataset for the Valve machine with
AUC: 86.4 % and pAUC: 76.2 %. Thus, it is used in all submissions.

4. SUBMISSIONS

We have submitted four variants of our approaches. In all variants
we used OpenL3 with parameters as follows:

• Input Representation: linear
• Content Type: music
• Embedding Size: 6144
• Hop Size: 0.1

and our auto-encoder with architecture as follows:
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Submis. 1 Submis. 2 Submis. 3
problem AUC pAUC AUC pAUC AUC pAUC

bearing 67.4 61.0 65.8 54.7 64.0 53.5
fan 62.0 60.4 61.6 58.9 67.1 60.6

gearbox 79.8 64.8 77.7 66.3 72.1 59.6
slider 77.0 62.6 81.0 68.4 77.6 58.7

ToyCar 87.8 67.8 89.4 71.1 86.3 65.4
ToyTrain 69.0 63.8 67.7 61.8 68.6 60.5

Average 74.5 64.9 74.3 64.6 73.7 61.4

Table 1: Harmonic means of AUCs and pAUCs on development
dataset. Sumbission 4 is composed of highlighted models for spe-
cific machines. It scored AUC: 76.2 %, pAUC: 66.2 %.

• Input (12288)
• Dense (128) + ReLU
• Dense (32) + ReLU
• Dense (128) + ReLU
• Output (12288)

The four submissions are as follows:
Submission 1 - uses OpenL3 prepossessing, our AEDiff train-

ing and LOF final anomaly detector.
Submission 2 - uses OpenL3 prepossessing, our DADAED

training and LOF final anomaly detector.
Submission 3 - uses OpenL3 prepossessing, our AEDiff train-

ing and KNN final anomaly detector.
Submission 4 - combines predictions from all the above men-

tioned approaches – for each machine type the predictions which
performed the best on the development dataset has been chosen.
Namely:

• ToyTrain, Bearing, Gearbox - predictions from Submission 1,
• ToyCar, Slider - predictions from Submission 2,
• Fan - predictions from Submission 3,
• Valve - our custom model.

This Submission achieved the overall scores AUC: 76.2 %, pAUC:
66.2 %.

5. RESULTS

To evaluate all three approaches, we used Development data of
DCASE2022 Task-2 Challenge[4, 5, 6]. In Table 1 we summa-
rize the AUCs and pAUCs for p = 0.1 of all four submissions
(for detailed results see Appendix). We can see that all submissions
have similar results with small differences in some domains (the
best scores are highlighted in the table). The Submission 4 com-
bines the remaining submissions by choosing the best performing
method for each machine type.

6. CONCLUSION

We have proposed and evaluated a novel anomaly detector based
on auto-encoder’s reconstruction difference. One approach uses
solely the reconstruction difference, while second approach uses
additional data from latent space of auto-encoder. The submission
combining these two approaches results with the highest average

score overall of AUC: 72.6 %, and pAUC: 66.2 %, outperforming
the baseline AutoEncoder solution.

7. ACKNOWLEDGMENT

We want to thank NeuronSW SE company, for the support and for
providing computational resources to train and evaluate the algo-
rithms.

8. REFERENCES

[1] J. Cramer, H.-H. Wu, J. Salamon, and J. Bello, “Look, listen,
and learn more: Design choices for deep audio embeddings,” in
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), 05 2019, pp. 3852–3856.
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Appendix
Detailed results for each class is shown in Table 2.
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Submis. 1 Submis. 2 Submis. 3 Submis. 4
problem AUC pAUC AUC pAUC AUC pAUC AUC pAUC

fan-0 S 58.12 60.00 48.32 54.74 82.24 68.84 82.24 68.84
fan-0 T 71.16 62.32 71.44 60.63 71.12 59.58 71.12 59.58
fan-1 S 61.40 57.05 62.64 54.11 59.00 53.68 59.00 53.68
fan-1 T 47.04 51.58 55.32 52.21 57.12 52.00 57.12 52.00
fan-2 S 76.60 78.95 76.40 75.16 74.64 77.26 74.64 77.26
fan-2 T 66.72 58.74 64.04 61.68 65.32 59.16 65.32 59.16

gearbox-0 S 92.88 86.53 87.08 78.95 84.20 72.21 92.88 86.53
gearbox-0 T 75.24 64.42 84.64 74.32 69.96 56.42 75.24 64.42
gearbox-1 S 81.96 57.68 78.40 62.74 74.84 51.16 81.96 57.68
gearbox-1 T 73.72 56.00 62.24 53.68 61.72 51.58 73.72 56.00
gearbox-2 S 79.00 68.42 85.08 77.89 75.24 73.68 79.00 68.42
gearbox-2 T 78.52 63.79 72.44 58.95 70.52 60.00 78.52 63.79

bearing-0 S 82.68 69.26 67.36 52.03 64.68 54.74 82.68 69.26
bearing-0 T 77.44 59.16 69.52 53.16 69.68 51.01 77.44 59.16
bearing-1 S 43.84 47.58 53.76 51.32 53.48 48.00 43.84 47.58
bearing-1 T 82.64 56.84 84.92 68.21 85.08 65.26 82.64 56.84
bearing-2 S 67.68 70.11 61.50 51.11 62.34 53.01 67.68 70.11
bearing-2 T 69.68 70.32 65.20 55.59 57.42 52.11 69.68 70.32

slider-0 S 83.88 72.21 88.32 83.37 87.76 70.11 88.32 83.37
slider-0 T 79.80 57.26 85.60 64.63 80.68 49.47 85.60 64.63
slider-1 S 85.76 62.32 91.76 73.68 83.68 58.95 91.76 73.68
slider-1 T 81.32 60.84 80.96 66.74 77.32 58.74 80.96 66.74
slider-2 S 76.84 65.68 78.40 69.89 78.40 58.95 78.40 69.89
slider-2 T 60.76 59.58 66.32 57.68 62.84 59.58 66.32 57.68

valve-0 S 99.92 99.58 99.92 99.58 99.92 99.58 99.92 99.58
valve-0 T 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
valve-1 S 63.80 48.21 63.80 48.21 63.80 48.21 63.80 48.21
valve-1 T 87.04 71.58 87.04 71.58 87.04 71.58 87.04 71.58
valve-2 S 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
valve-2 T 81.60 71.58 81.60 71.58 81.60 71.58 81.60 71.58

ToyCar-0 S 87.40 64.21 84.68 54.11 86.36 59.37 84.68 54.11
ToyCar-0 T 81.68 56.42 87.60 67.58 83.44 60.21 87.60 67.58
ToyCar-1 S 82.04 61.05 88.64 78.74 84.52 65.68 88.64 78.74
ToyCar-1 T 86.00 65.47 90.12 73.47 78.96 60.63 90.12 73.47
ToyCar-2 S 99.56 97.68 100.00 100.00 99.96 99.79 100.00 100.00
ToyCar-2 T 92.76 75.16 87.08 67.79 87.08 60.42 87.08 67.79

ToyTrain-0 S 63.80 60.00 66.04 62.11 62.80 55.16 63.80 60.00
ToyTrain-0 T 53.24 50.53 49.00 47.79 54.20 48.21 53.24 50.53
ToyTrain-1 S 85.20 70.74 83.88 71.37 80.88 65.05 85.20 70.74
ToyTrain-1 T 57.32 57.26 56.40 56.63 57.64 56.00 57.32 57.26
ToyTrain-2 S 96.12 84.21 95.76 84.84 93.32 79.79 96.12 84.21
ToyTrain-2 T 77.48 70.95 76.76 60.00 79.20 69.05 77.48 70.95

Average 74.51 64.88 74.26 64.61 73.68 61.44 76.20 66.16

Table 2: Detailed results for each section, source(S) and target (T).


