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ABSTRACT

This technical report describes our approach for the
DCASE2022 Challenge Task 2. This task aims to continue
research on unsupervised anomalous sound detection and develop
new high-performing systems for monitoring the condition of
machines. In contrast to the DCASE2021 Challenge Task 2, the
2022 task primarily focuses on domain generalization. First and
foremost, we propose the idea of using ensembles of 2D CNN-
based systems that utilize different time-frequency representations
as input features. We use normal sound clips and their section
indices to train our anomalous sound detection (ASD) systems
for each machine type, and embedding vectors extracted from our
CNNs, cosine similarity, and the k-nearest neighbors algorithm
(k-NN) to calculate the anomaly scores of test clips. As a result,
our method achieves the official score of 0.725 on the development
dataset and significantly outperforms the baseline systems.

Index Terms— anomalous sound detection, time-frequency
representations, convolutional neural networks, log mel spectro-
gram, MFCC, GFCC

1. INTRODUCTION

The DCASE2022 Challenge Task 2 (Unsupervised Anomalous
Sound Detection for Machine Condition Monitoring Applying Do-
main Generalization Techniques) [1] focuses on the detection of
mechanical failure by observing sounds. In unsupervised anoma-
lous sound detection tasks, it is supposed that anomaly detectors are
trained exclusively with normal sound clips without anomalies, but
after training, are capable of correctly detecting anomalies [1, 2].
Thus, training datasets for these tasks consist of only normal sam-
ples [3, 4], and systems are trained in a self-supervised learning
manner.

The main difference between the 2022 task and the
DCASE2021 Challenge Task 2 [2] is that the source/target domain
of each sample from the evaluation dataset is not specified. Thus, it
complicates the development of high-performing systems because,
in contrast to the 2021 task, researchers are not able to design vari-
ous algorithms for various domains or use domain adaptation tech-
niques. The 2022 task aims to the development of domain gener-
alization techniques and versatile systems that are mainly trained
with the source domain data and are capable of using for the target
domain data without domain adaptation.

In previous studies on unsupervised anomalous sound detec-
tion, developed systems were based on either autoencoders [5] or
classification neural networks [6, 7, 8]. The main idea of au-
toencoders is to encode and reconstruct audio clips using a low-

dimensional space [1]. An autoencoder (AE) is trained with nor-
mal sounds, so normal audio clips are generally reconstructed bet-
ter than abnormal ones. Hence, the anomaly score can be calcu-
lated using the reconstruction error. The second approach is based
on using classification systems that are trained to distinguish among
audio clips by their attributes, which are utilized as classes. Then,
the anomaly scores are calculated as the error in the identification
of the correct class [1] or through other alternative ways. The most
popular alternative way is the use of the average value of cosine
or euclidean distance to k-nearest training samples with the same
attributes in an embedding space [7, 8].

In this work, we employ the second approach, sections as audio
attributes, and ArcFace [9] as a loss function to train our CNN-based
systems. Moreover, to calculate the anomaly scores of test clips, we
use embeddings extracted from systems and cosine similarity from
them to k-nearest embeddings of training clips with appropriate sec-
tions.

In addition, we consider the log mel spectrogram (LMS) [10],
the Mel-Frequency Cepstral Coefficients (MFCC) [11, 10], and the
Gammatone Frequency Cepstral Coefficients [12, 13] as three time-
frequency representations, which are used as input features to mod-
els. Then, we combine these models to build ensembles that enables
to detect anomalies on audio clips better. Since the sounds of dif-
ferent machines have different sound characteristics, it makes sense
to use the most appropriate representation for each machine type.
Moreover, ensembles of models with various representations as in-
put can contain the advantages of each representation.

For instance, in [14] was shown that models, which utilize mul-
tiple feature channels consisting of various audio signal represen-
tations as input, achieve higher performance than models with sin-
gle representations. In contrast to [14], we combine models, which
use single feature channels, and use decision-level fusion at the end
as in [15] (we use the weighted average of the anomaly scores) to
obtain predictions. The main reason is that there are different fre-
quency scales on various representations, and combining them in
one multiple channel input can lead to incorrespondence between
frequency dimensions, and therefore, to the incorrect extraction of
local spatial features with convolutional layers.

As a backbone architecture, we employ ERANNs (Efficient
Residual Audio Neural Networks) [16]. ERANNs are CNN-
based systems for audio pattern recognition tasks that utilize time-
frequency representations as input (the log mel spectrogram in the
original paper). ERANNs are based on ResNets [17] and WideRes-
Nets [18]. These systems achieve high performance on diverse au-
dio pattern recognition tasks while having low computational com-
plexity compared with other CNN-based systems.

The remainder of this technical report is organized as follows:
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Section 2 describes the feature extraction process, data augmenta-
tion techniques, the proposed architecture of CNN-based systems,
and the method of obtaining the anomaly scores. Section 3 provides
experimental results on the development dataset, Section 4 desribes
our submissions, and Section 5 concludes the technical report.

2. ANOMALOUS SOUND DETECTION SYSTEM

2.1. Feature extraction

In this study, we use multiple time-frequency representations (LMS,
MFCC, and GFCC) as input features to our models.

We apply the short-time Fourier transform (STFT) with the
Hann window of size 1024 and the hop size of 256 to extract all rep-
resentations. The number of frequency bins for each time-frequency
representation is 256. We also use a sampling rate (sr) of 16 kHz
for all audio clips (we do not apply resampling methods). More-
over, we adopt the lower cut-off frequency fmin = 50 Hz and
the upper cut-off frequency fmax = 7500 Hz. Thus, the shape
of each time-frequency representation for 10-second audio clips
equals 626× 256.

Instead of the logarithm, we use the cube root of the values of
the mel spectrogram to extract MFCC as in [13]. We have con-
ducted experiments and figured out that MFCC with the cube root
outperforms default MFCC.

2.2. Data augmentation techniques

We apply two data augmentation techniques to prevent models from
overfitting during training:

• temporal cropping: during training models, we use 3-second
sections of audio clips that are cut from random places. During
evaluating models, we utilize full 10-second audio clips with-
out the temporal cropping to obtain embeddings.

• SpecAgment [19]: we also use SpecAugment for frequency
and time masking on time-frequency representations of train-
ing audio clips. SpecAugment is applied with two time masks
with a maximum length of 32 frames and two frequency masks
with maximum length of 32 bins.

2.3. Neural network architecture

In this work, we use ERANN-2-0 (W = 2 and sm = 0) [16] as
a backbone architecture to build our systems. The architecture of
ERANN-2-0 is described in Table 1.

Table 1: Architecture of ERANN-2-0
Blocks/Layers Stride Kernel Output size

batchnorm – – 626× 256× 1
residual block × 4 1×1 3×3 626× 256× 16
residual block × 4 2×2 3×3 313× 128× 32
residual block × 4 2×2 3×3 156× 64× 64
residual block × 4 2×2 3×3 78× 32× 128
residual block × 4 2×2 3×3 39× 16× 256
global pooling – – 1× 1× 256
flatten – – 256
fully connected – – 256

Residual blocks, which based on the basic blocks of
ResNet-V2 [20], contains two or three 2D convolutional layers,
two batch-norm layers [21], and two non-linear activation functions
(Leaky ReLU with α = 0.01). The first batch-norm layer is used
for the frequency-wise normalization. In global pooling, we apply
a combination of average and max pooling as in [22].

Thus, ERANN-2-0 is used to derive embeddings of size 256
that represent audio clips. These embeddings are utilized as input
features to ArcFace, as well as for calculating the anomaly scores.

2.4. Additive Angular Margin Loss

To train our systems we employ Additive Angular Margin Loss
(ArcFace) [9] as a loss function. This loss function was applied in
many approaches for previous unsupervised anomalous sound de-
tection tasks [6, 8], and ADS systems trained with ArcFace demon-
strated better performance than systems trained with standard soft-
max losses. This loss ensures a margin between classes that en-
hances the intra-class compactness and the inter-class separability
of extracted embeddings. Moreover, in contrast to other standard
losses, this loss contains an additional fully connected layer with
trainable parameters.

We use all the six sections from the development dataset com-
bined with the additional training dataset to train our ASD systems
using ArcFace. We adopt m = 0.09 (the angular margin penalty)
and s = 40 (the re-scale factor) for all experiments.

2.5. Calculating anomaly scores

To calculate the anomaly scores of test clips we use cosine similarity
and the k-nearest neighbors algorithm [23]. The underlying idea is
to consider the value of the anomaly score of an audio clip as the
average cosine similarity (with a minus sign) from the embedding
of this audio clip to the k-closest embeddings of training clips from
the same section. We adopt k = 1 for all experiments.

In addition, we use the logarithm to have a greater difference in
absolute value between the anomaly scores S:

S = log (1− C), (1)

where C ∈ [−1, 1] is the cosine similarity between two embed-
dings.

2.6. Ensemble strategy

Ensemble techniques are proved to be effective in the previous
DCASE challenges [2]. In previous works, ensemble techniques
were mainly used for the combining of models that have different
hyperparameters or architectures [6, 7].

We propose another ensemble strategy that is supposed to com-
bine models with the same architecture but with different time-
frequency representations (LMS, MFCC, GFCC) as their input.

To build ensembles and calculate the final anomaly score of an
audio clip we employ the weighted average:

S =

n∑
i=1

wi · Si,

n∑
i=1

wi = 1, (2)

where S is the final anomaly score of the audio clip, Si are the
anomaly scores of the audio clip calculated using the i−th model
with the i−th time-frequency representation as input, wi are
weights, and n is the number of models (we use n ≤ 3).
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3. EXPERIMENTS AND RESULTS

3.1. Training setup

Parameters of models are optimized with the Adam optimizer [24]
with the learning rate of 0.0002 and with a mini-batch size of 32.
We also use an exponential moving average (EMA) of model pa-
rameters with a decay rate of 0.999. We do not apply any sched-
ulers. We train all models for 100 epochs and use early stopping
to obtain final models with the best validation scores (the harmonic
mean of the AUC and pAUC scores over all sections and domains)
for each machine type.

3.2. Dataset

To train and evaluate ASD systems development (including
the additional training dataset) and evaluation datasets are
provided [1, 3, 4]. The development dataset contains training and
test data. The training data consists of seven types of machines
(”ToyCar”, ”ToyTrain”, ”bearing”, ’fan”, ”gearbox”, ”slider”, and
”valve”), and each type of machine consists of six sections (Sections
00, 01, 02, 03, 04, and 05). In the training data, for each section and
machine type, there are 990 clips of normal sounds in the source
domain and only ten clips of normal sounds in the target domain.

The test data (the part of the development dataset) comprises the
same machine types, the first three sections, 50 clips of normal and
50 clips of abnormal sounds for each section, domain, and machine
type.

The evaluation dataset consists of the last three sections (Sec-
tions 03, 04, and 05), has the same number of audio clips as the test
data, and, in contrast to the development dataset, does not contain
any information about the domain.

All audio recordings have a length of 10 seconds and a sampling
rate of 16 kHz.

3.3. Results

The results of our ASD systems on the development dataset are
demonstrated in Table 2, Table 3, Table 4, and Table 5. In the ta-
bles, we compare single models ERANN-S, the ensemble ERANN-
M containing two models, and the ensemble ERANN-L containing
three models with various time-frequency representations as input.
We also compare our systems with the baseline systems [1]. All
systems consist of ERANN-2-0 models.

Table 2, Table 3, and Table 4 contain the values of the harmonic
mean of the AUC and pAUC (p = 0.1) scores over all the sections
for each machine type and domain. Table 5 shows the values of the
official score Ω that is equal to the harmonic mean of the AUC and
pAUC scores over all the machine types, sections, and domains. In
addition, in Table 6, we detail the values of the weights wi for our
ensembles ERANN-M and ERANN-L.

Moreover, Table 5 contains results of the single model
ERANN-S-B that use the most performed time-frequency represen-
tation for each machine type: the log mel spectrogram for ToyCar,
bearing, fan, and valve, MFCC for gearbox and slider, and GFCC
for ToyTrain.

We show that ERANN-S with a specific time-frequency repre-
sentation as input performs better for a specific machine type. For
instance, the log mel spectrogram (LMS) is the best representation
for bearing, fan, and valve. On the other hand, MFCC is better
than LMS for gearbox and slider. Thus, analysis of multiple time-
frequency representations and choosing the best one for each ma-

chine type can be effective for anomalous sound defections tasks.
From table 5, we can also see that ensembles of models outperform
single models by a large margin.

As can be seen from the tables, our ASD systems significantly
outperform the baseline systems. The best ensembles ERANN-L,
which consist of three models, achieve the official score of 0.725.

4. SUBMISSIONS

In total, we submit results of four ASD systems on the evaluation
dataset:

• submission 1: the results of single models ERANN-S with the
log mel spectrogram as input;

• submission 2: the results of single models ERANN-S-B with
the most performed time-frequency representation as input;

• submission 3: the results of ensembles ERANN-M (two mod-
els);

• submission 4: the results of ensembles ERANN-L (three mod-
els).

5. CONCLUSION

In this technical report, we have proposed the technique of using an
ensemble of 2D CNN-based systems with various time-frequency
representations as input features for the DCASE2022 Challenge
Task 2. We have proven by the experiments that this technique is
effective for anomalous sound detection tasks.

We have shown that our anomalous sound detection systems
have significantly better performance than the baseline systems.
Our best ensembles achieve the official score of 0.725 on the de-
velopment dataset.
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Table 2: Harmonic Mean of AUC for the source domain on Development Dataset

Input Features ToyCar ToyTrain bearing fan gearbox slider valve h-mean
LMS MFCC GFCC

baseline (AE) [1] 0.904 0.763 0.544 0.786 0.689 0.780 0.520 0.687
baseline (CNN) [1] ✓ 0.591 0.573 0.606 0.708 0.692 0.652 0.671 0.638

✓ 0.807 0.768 0.783 0.698 0.715 0.973 0.933 0.800
ERANN-S ✓ 0.713 0.767 0.674 0.705 0.884 0.959 0.903 0.787

✓ 0.728 0.863 0.627 0.686 0.859 0.930 0.895 0.783

ERANN-M ✓ ✓ 0.790 0.783 0.785 0.823 0.884 0.961 0.950 0.848
ERANN-L ✓ ✓ ✓ 0.797 0.849 0.806 0.823 0.884 0.961 0.951 0.863

Table 3: Harmonic Mean of AUC for the target domain on Development Dataset

Input Features ToyCar ToyTrain bearing fan gearbox slider valve h-mean
LMS MFCC GFCC

baseline (AE) [1] 0.348 0.234 0.584 0.472 0.626 0.477 0.495 0.419
baseline (CNN) [1] ✓ 0.520 0.459 0.599 0.482 0.562 0.382 0.572 0.500

✓ 0.693 0.462 0.835 0.589 0.684 0.663 0.859 0.658
ERANN-S ✓ 0.749 0.445 0.714 0.543 0.813 0.703 0.815 0.654

✓ 0.667 0.422 0.697 0.543 0.745 0.623 0.844 0.621

ERANN-M ✓ ✓ 0.763 0.458 0.836 0.594 0.813 0.702 0.868 0.687
ERANN-L ✓ ✓ ✓ 0.762 0.436 0.835 0.594 0.813 0.702 0.876 0.681

Table 4: Harmonic Mean of pAUC on Development Dataset

Input Features ToyCar ToyTrain bearing fan gearbox slider valve h-mean
LMS MFCC GFCC

baseline (AE) [1] 0.527 0.505 0.520 0.575 0.585 0.558 0.504 0.537
baseline (CNN) [1] ✓ 0.523 0.515 0.571 0.569 0.560 0.547 0.624 0.557

✓ 0.598 0.520 0.694 0.669 0.599 0.636 0.793 0.634
ERANN-S ✓ 0.616 0.539 0.603 0.555 0.728 0.664 0.753 0.628

✓ 0.595 0.532 0.598 0.605 0.677 0.543 0.791 0.611

ERANN-M ✓ ✓ 0.620 0.533 0.693 0.637 0.728 0.663 0.806 0.659
ERANN-L ✓ ✓ ✓ 0.621 0.540 0.688 0.637 0.730 0.663 0.831 0.662

Table 5: Official score Ω on Development Dataset

Input Features Official Score
LMS MFCC GFCC Ω

baseline (AE) [1] 0.527
baseline (CNN) [1] ✓ 0.566

✓ 0.690
ERANN-S ✓ 0.684

✓ 0.663

ERANN-S-B ✓ ✓ ✓ 0.712

ERANN-M ✓ ✓ 0.722
ERANN-L ✓ ✓ ✓ 0.725

Table 6: Weights for ensembles

Machine Type ERANN-M ERANN-L
LMS MFCC LMS MFCC GFCC

ToyCar 0.56 0.44 0.51 0.36 0.13
ToyTrain 0.59 0.41 0.03 0.42 0.55
bearing 0.99 0.01 0.89 0.01 0.10
fan 0.20 0.80 0.21 0.78 0.01
gearbox 0.01 0.99 0.01 0.97 0.02
slider 0.01 0.99 0.01 0.98 0.01
valve 0.51 0.49 0.45 0.32 0.23


