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ABSTRACT
This report describes our systems submitted to DCASE2022 chal-
lenge task3: sound event localization and detection (SELD) eval-
uated in real spatial sound scenes. We present two approaches to
improve the performance of this task. The first one is to leverage
active learning to bring in and filter the AudioSet dataset based on
the pre-trained audio neural networks (PANNs). The second one
is to adapt the generic models to different sound event categories,
thereby improving the performance on classes with scarce data. We
have also explored various model structures incorporating attention
machanisms. Finally, we combine models trained on different input
recording formats. Experimental results on the validation set show
that the proposed systems can greatly improve all the metrics when
compared to the baseline systems.

Index Terms— DCASE2022, Sound event localization and de-
tection, Active learning, AudioSet, Adaptation

1. INTRODUCTION

Sound event localization and detection (SELD) plays an important
role in robots sensing [1], audio surveillance for animals [2], navi-
gation for the hearing impaired [1] and so on. Its goal is to recognize
the onset and offset of sound events when active and the correspond-
ing temporal trajectory. SELD involves two subtasks, sound event
detection (SED) and directional of arrival estimation (DOAE).

Unlike previous years of SELD tasks, DCASE2022 makes
some changes to this task. The most significant difference is that
all the audios are recorded in real sound scenes and manually anno-
tated instead of computationally generated. This transition brings
several impacts on nature of this task. First, as the recording pro-
cedure is complex and strict , creating a large dataset is very ex-
pensive. Second, the sound making difficulty varies across different
classes, making the data distribution severely imbalanced. For ex-
ample, the sounds easy to perform contribute a great part, like male
speech, female speech and music, while the sounds hard to control
are fairly few, like knock and door.

To solve the above two problems, we explore two strategies.
Firstly, to settle the lack of data, we introduce the temporally-strong
labeled release of AudioSet [3] (AudioSet-strong)1 as one of the

∗Equal contribution.
†Corresponding author.
1https://research.google.com/audioset/download strong.html

external data sources to this challenge. To further augment data
with reliable labels, we apply active learning to our models, where
the audios are scored using the pre-trained audio neural networks
(PANNs) [4]. Secondly, to mitigate the data imbalance problem,
we train a number of task-specific models. As each trained model
is domain adapted, the event classes with scarce data are able to be
recognized more accurately. In addition to modifications from the
data perspective, we also explore better model structures based on
convolutional recurrent neural network (CRNN) used in the base-
line [1, 5] for this SELD task, including increasing the number of
convolutional layers and adding an attention layer or transformer
encoder [6]. The submitted models combine a number of mod-
els with different architectures and input recording formats to im-
prove the performance. Experiments conducted on the development
dataset show that our systems improve greatly over the baseline.

2. PROPOSED APPROACH

In this section, we will first explain how to apply PANNs for fil-
tering external data and the adaptive learning approach using the
filtered data. Then we will explain the proposed domain adaptation
approach where models are adapted to different categories to suit
imbalanced data distribution. We will also describe our architecture
modifications for the baseline model. Finally, our training setup is
illustrated.

2.1. PANNs-based Active Learning

We use the AudioSet dataset as one of the external data source.
Because the original release (AudioSet-original)2 is weakly la-
beled with a resolution of 10s along with serious overlapping,
which brings in multiple inference classes, for this task we use
the AudioSet-strong release. To select data from AudioSet-strong,
we exploit PANNs to identify the non-overlapping and reliable seg-
ments, which are then be used to synthesize spatial audio for active
learning. Specifically, we first pick the sound classes identical to
those in the original release and clean the dataset by filtering out
audios shorter than 0.05s. Next, audios shorter than 0.5s are con-
catenated until they are longer than 0.5s. Then the PANNs outputs
the probabilities p(c)i of 527 classes defined by AudioSet ontology

2https://research.google.com/audioset/download.html



Detection and Classification of Acoustic Scenes and Events 2022 Challenge

(a) model #1 (b) model #2 (c) model #3 (d) model #4

Figure 1: Illustration of proposed model architecture. (a) model #1, (b) model #2, (c) model #3, (4)model #4. nhead, d ffn denote the
number of heads in attention layer, the intermediate dimension in feed forward network.

for audio i, in which c ∈ {1, 2, ..., 527}. Suppose that the corre-
sponding label class indexes are C, audios whose output probabili-
ties not satisfying {

pci > thd1, c ∈ C,

pci < thd2, c /∈ C
(1)

will be filtered out, where thresholds thd1 and thd2 determine
whether audio i is correctly labeled, and therefore need careful tun-
ing for different target classes. The remaining audios are finally
used to simulate real data with spatial room impulse responses us-
ing provided data generator3.

2.2. Domain Adaption

As there are 13 sound event target classes, we train single model
with the same structure for each class, and each model can only
classify the specific class. During inference on unseen validation
set or evaluation set, all the 13 models’ output will be combined to
form the final predicted output.

2.3. Model Architecture

Figure 1 shows our model architectures. The models are based
on the CRNN structure. The input is acoustic features for tetra-
hedral microphone array (MIC) format or first-order ambisonics
(FOA) format. For MIC format, we extract logmel and GCC-PHAT
features, while for FOA format, logmel and intensity vectors are
computed. The output is activity-coupled Cartesian direction of ar-
rival (ACCDOA) representation. In order to increase the diversity
and robustness of the model ensembles, four model variants are in-
troduced, that is model #1∼#4. In general, all the four variants
double the number of convolutional blocks compared to the base-
line. Our model architectures also incorporate single multi-head
self-attention (MHSA) layer or transformer encoder to the original
network.

3https://dcase.community/challenge2022/task-sound-event-localization-
and-detection-evaluated-in-real-spatial-sound-scenes#example-external-
data-use-with-baseline

2.4. Hyper-parameters and Training settings

Our hyper-parameters and training setup mostly follows the base-
line. The training data include Sony-TAU Realistic Spatial Sound-
scapes 2022 (STARSS22)4 [7] training set (∼5 hours), and synthe-
sized data (55 hours in total) with FSD50K5 (which is provided)
[8] and AudioSet-strong. The audios are synthesized with 10 room
impulse responses and maximum 2 events are overlapped, and each
audio is 60s length. The model output format is the multi-ACCDOA
format introduced in [5].

3. MODEL COMBINATION

Table 3 shows the performance of our submitted systems. We com-
bine proposed models trained on MIC and FOA formats. In ad-
dition, we also combine each system’s models by applying a sim-
ple average strategy to their results. Specifically, the four systems
use 0.4 as the threshold, which we use to compare with the class
output’s ACCDOA vector length, and if it exceeds the threshold,
the corresponding class is supposed to be active. To convert multi-
ACCDOA with three tracks to single-ACCDOA output format, the
result of the most active track is saved as the final output of each
model.

4. EXPERIMENTAL EVALUATION

In this section, we show our experimental settings, and compare the
experimental results with the baseline.

4.1. Experimental settings

We evaluate our approach using the STARSS22 evaluation set. The
four metrics used for evaluation measure the accuracy of detection
(ER20◦ , F20◦ ) and localization (LECD , LRCD). ER20◦ and F20◦

compute the classification error rate and F-score, which is based on
whether the prediction is further or closer to the true DOA than

4https://zenodo.org/record/6387880
5https://zenodo.org/record/4060432.YqicNqhByl4
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Table 1: System configuration. Format denotes recording format.

System Format Base model

System #1 FOA model #1, #2, #4
MIC model #1, #2, #4

System #2 FOA model #1, #2, #4
MIC model #1, #2, #3, #4

System #3 FOA model #1, #2, #3, #4
MIC model #1, #2, #4

System #4 FOA model #1, #2, #3, #4
MIC model #1, #2, #3, #4

20◦. LECD and LRCD depend on correct sound event classifica-
tion, which represent the class-based localization error and local-
ization recall respectively. Contrary to previous challenges, macro-
averaging is performed in this challenge, in which F20◦ , LECD

and LRCD are first calculated for separate classes, and are then av-
eraged across all the classes. The aggregated SELD score can be
calculated as

score =
1

4

[
ER20◦ + (1−F20◦) +

LECD

180◦ + (1− LRCD)

]
. (2)

4.2. Experimental Results

To explore the improvement of our approaches for the dataset and
model, we conduct a series of experiments.

We evaluate the performance of different dataset ensembles
with CRNN as used model and MIC as input recording format. As
shown in table 2, additional datasets improve the performance of all
metrics, especially for LRCD with external AudioSet dataset com-
pared to only adding FSD50K.

Table 2: SELD performace of our models with external data and
baseline. ∗ means the results are reported officially.

Dataset ER20◦ F20◦ LECD LRCD

STARSS22∗ 0.71 18.0 32.2◦ 47.0
+FSD50K 0.63 32.0 24.6◦ 42.5
+FSD50K&AudioSet 0.59 34.0 21.4◦ 52.4

We also compare model #1∼#4 with CRNN trained on
STARSS22, FSD50K and AudioSet, and the results show that all the
proposed models outperform the original CRNN. Finally, we con-
duct an experiment on model #1 trained on all mentioned datasets,
and the four metrics respectively improve by 3.9%, 35.2%, 37.8%,
11.4% relatively, which validates the effectiveness of the domain
adaptation.

Table 3 compares the performance of our systems with the
baseline on validation set, where the baseline model is trained on
STARSS22 dataset with multi-ACCDOA output format. As shown
in the table, our systems outperform the baseline on all metrics by
a large margin, especially for F20◦ .

5. CONCLUSION

The focus of DCASE2022 SELD task is for the real spatial sound
scenes. The main challenges arises from the small size and the im-

Table 3: SELD performance of our systems and baseline. ∗ means
the results are reported officially.

System ER20◦ F20◦ LECD LRCD score

Baseline-FOA∗ 0.71 21.0 29.3◦ 46.0 0.551
Baseline-MIC∗ 0.71 18.0 32.2◦ 47.0 0.560
System #1 0.47 62.2 11.3◦ 69.0 0.305
System #2 0.46 61.8 11.4◦ 68.4 0.306
System #3 0.48 61.4 11.5◦ 69.0 0.309
System #4 0.47 61.6 11.4◦ 68.7 0.307

balance of the data. To solve these two challenges, we propose a
PANN-based active learning strategy to agument the dataset, and
propose a domain adaptation approach to improve the performance
on the low-resource categories. Experimental results show that our
systems can improve all the metrics significantly compared to the
baseline systems for the DCASE2022 SELD task.
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