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ABSTRACT

Our challenge submission shows how large-scale pretrained deep
learning models can serve as a strong basis for a cross-modal
(text-to-audio) retrieval system. Our system uses embeddings
extracted by these models in a general alignment framework to
connect matching pairs of audio and text. It processes audio and
text separately through different pretrained models, each returning
an embedding. Shallow neural networks map the embeddings to a
common dimensionality. The cross-modal alignment of the individ-
ual embeddings is optimised using a contrastive loss. We employ
the RoBERTa foundation model as the text embedding extractor.
A pretrained PANNs model extracts the audio embeddings. The
embedding extractor model weights remain frozen. To improve the
generalisation of our model, we investigate how pretraining with
audio and associated noisy text collected from the online platform
Freesound improves the performance of our method. We find that a
two-stage training process consisting of pretraining with noisy data
and fine-tuning with the challenge datasets gives the best results for
our approach. Our system showcases a simple yet effective method
which is superior to the challenge baseline.

1. INTRODUCTION

The DCASE2022 challenge subtask 6b provides a platform to stim-
ulate research in the underexplored problem domain of language-
based audio retrieval [1]. The goal of this task is to find the closest
matching audio recordings for a given text query. A possible ap-
plication for this task is a search engine for audio files in which a
user can enter a free-form textual description to retrieve matching
recordings. Such systems need to draw a connection between the
two modalities: audio and text.

Given the complex nature of both audio and text, we expect that
a submission for this task can only be competitive if it can capitalise
on a large amount of training data. Due to the novelty of the task,
not many previous studies and systems exist for language-based au-
dio retrieval and training data is still limited. We instead turn to the
fields of machine listening, specifically audio tagging, and natural
language processing to draw inspiration from related problems and
make use of existing resources such as pretrained models. It has
become a popular approach to use large-scale pretrained models in
a transfer learning setup for tasks where only limited training data
is available.

The goal of this work is to build a simple, generic cross-modal
alignment system that leverages the power of pretrained models to
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Figure 1: Overview of the architecture of our system. An audio
tower and a text tower process the respective input data separately
and produce a single embedding.

semantically connect audio and text. With the help of a metric learn-
ing framework we intend to link the two modalities. Our system
should be able to process audio and text independently to be used
in a cross-modal retrieval context. We aim to limit the complex-
ity of our approach by employing the pretrained models with fixed
weights and only training shallow network architectures to perform
the alignment.

2. METHOD

In our approach, we adopt a metric learning framework to embed
the audio and text into a shared acoustic-textual space. Our system
consists of two components — an audio tower and a text tower — to
separately process the audio and text input. Each tower is further
divided into an encoder, E(-), and an embeddings’ adapter, A(-).
As the audio encoder E, and the text encoder E;, we employ pre-
trained models. We do not fine-tune the encoder models in our ap-
proach and only optimise the adapters. An overview of our method
is presented in Figure 1.

More specifically, an audio input X, or a text input X; are
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processed by E, and E;, respectively, as

Za == Ea(Xa)a

M
Z; = Et(Xt),
where Z; € RTi*Fi j € {a,t} is a sequence of T} intermediate
representations with F; features provided by the pretrained model
(i.e., an embedding sequence). Then, the adapters A, and A; will
process Z, and Z; as

Z,, = Ay (Za),

2

Zi = Au(Zy), @

where Z/,, Z; € R" are single embeddings and F’ denotes their

dimensionality. The intermediate embedding sequences Z, and Z;

produced by the audio and text encoder respectively will differ in

dimensionality. The main purpose of the adapters is to match the di-

mensionality of text and audio embeddings in order to enable com-
parisons.

In our work, we use a contrastive loss [2] to align the embedded
spaces. With the contrastive loss, all the samples belonging to the
same reference label [ (e.g., a matching text and audio pair) are
pulled together in the embedded space, while being pushed away
from samples belonging to other labels (e.g., two different audio
files or a non-matching text and audio pair).

Given the cosine similarity s between a pair of embeddings with
labels [, and [z, the contrastive loss is defined by:

1- ifly =1
Lcont'rastive = N nh . > (3)
max(0,s) otherwise.

We compute the loss for every possible combination of simi-
lar and dissimilar samples (including text-to-text and audio-to-audio
pairs) and take the mean across all non-zero loss values.

For the final application as a text-to-audio retrieval system, we
compute the embedding of the text query Z’; and compares it to
all pre-computed embeddings Z',, of the audio items in the dataset
by means of the cosine similarity. Ranking the audio items by their
similarity score in descending order provides the retrieval results.

3. EXPERIMENTS

3.1. Datasets

As the main dataset in our work, we employ the development
dataset provided for this challenge, Clotho v2 [3], and use its offi-
cial splits for training, validation, and final evaluation (testing). We
posit that the Clotho dataset is relatively small for the training of
deep-learning-based retrieval systems and any system might ben-
efit from additional training data. Datasets combining audio and
text are scarce, however, and the few that exist next to Clotho are
either specific to a certain domain (e.g., urban soundscapes only
[4]) or their audio content is not freely accessible [5]. This is why
we decided to use weakly aligned text and audio pairs collected
from the online platform Freesound [6], which also served as the
data source for Clotho. Freesound allows users to upload an audio
recording along with a textual description and a set of tags. This
type of metadata was used before to extend the training data of
Clotho but in the context of an automated audio captioning task
[7]. For simplicity and reproducibility, we limit ourselves to the
dev subset of the FSD50k dataset [8]. We assume that the audios in
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Description Tags

“Typing on a mechanical key-
board”

“click”, “keyboard”, “me-
o

chanical”, “computer”, “typ-
ing”, “button”

“Pouring liquid in a shot glass, “slam”, “glass”, “pour”,
picking it up, drinking & slamming  “drink”, “liquid”, “alcohol”,
it down (not too hard) on the table.”  “shot”

“shower”, ‘“water”, “bath-
room”, “bathtub”, “human”

“opening of shower curtain, turn-
ing shower on, water running, turn-
ing shower off, getting out”

Table 1: Hand-picked examples of descriptions and text labels from
the metadata of the FSD50k dataset.

this dataset closely resemble the challenge audio data as the dataset
mainly comprises recordings of sound events. Moreover, similarly
to Clotho, audio clips are not longer than 30 seconds. The de-
scriptions and tags in the dataset contain rich information about the
content of the audio clip as can be seen from the examples given in
Table 1. Nevertheless, the text data is noisy and also contains some
undesired text.! To clean the descriptions we remove all HTML
mark-up and limit each text to 500 characters in a pre-processing
step. To form a “sentence” out of the tags, we join them with a
single white space in the order given by the content uploader. The
dev split of the FSDKS50 dataset contains almost 44100 files and we
use half of them. By using descriptions and tag sequences, we can
extend the training data by 40966 text-audio pairs (more than twice
the amount of caption-audio pairs in the training subset of Clotho).
We refer to the data from Clotho as “clean” and from FSD50k as
“noisy”’.

3.2. Evaluation & Metrics

We evaluate the ranked retrieval results generated by our systems
with the same four metrics as the challenge organisers. Specifically,
we report three ‘recall at k’ metrics (Recall@1, Recall@5, Re-
call@]0) and one ‘mean average precision at k&’ (mAP@ [0), where
a score for a given query is computed for the top-k retrieved results
and all scores are averaged over the entire set of queries. We direct
the reader to [9] for an in-depth explanation of the metrics.

3.3. Implementation details

Our system is implemented by relying on the PyTorch [10] frame-
work in connection with the pyforch-metric-learning package [11].
For the text processing, we employ the Transformers library [12]
and use the pretrained distilroberta-base model as the text encoder.
This model is a compressed version of the original RoBERTa model
[13] created by a knowledge distillation procedure [14]. It is smaller
and faster than the original variant while retaining high performance
on downstream tasks. Similar to our previous work on audio cap-
tioning [15], we decided to use the penultimate layer as the inter-
mediate embeddings Z;. The extracted text embeddings have a di-
mensionality F; of 768.

For the audio processing, we use a pretrained PANNs model
[16] as the audio encoder. We follow the authors’ suggestion and

'For example: “CAUTION: THIS PACK IS A CHEAP HOME
RECORD. (But this one sounds a bit better)”
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Recall@10

mAP@10

0.11 (0.10 -0.12)

0.217 (0.206 - 0.228)
0.194 (0.184 - 0.205)
0.200 (0.189 - 0.210)

Recall@1 Recall@5
Challenge baseline  0.03 (0.03 -0.04)
ATAE 0.071 (0.064 - 0.078)
ATAE-ET 0.064 (0.057 - 0.070)
ATAE-EP-F 0.067 (0.061 - 0.074)
ATAE-NP-F 0.072 (0.065 - 0.079)

0.225 (0.214 - 0.236)

0.19 (0.18 -0.20)

0.325 (0.312 - 0.337)
0.288 (0.275 - 0.300)
0.299 (0.286 - 0.311)
0.325 (0.313 - 0.338)

0.07 (0.06 -0.07)

0.136 (0.128 - 0.143)
0.121 (0.114 - 0.128)
0.127 (0.120 - 0.134)
0.139 (0.131 - 0.146)

Challenge

Table 2: Retrieval metrics for the four submitted systems and the challenge baseline on the development evaluation dataset. The 95%

confidence intervals computed by jackknife resampling are given in parentheses. The highest value for each metric is marked in bold.

compute embeddings by taking the post-activation output of the
penultimate layer of their CNN14 model.? All audio clips are re-
sampled to a sampling rate of 32 kHz in a preprocessing step. The
extracted intermediate audio embeddings Z, have a dimensionality
Fy, of 2048.

We use simple feed-forward neural networks to adapt each em-
bedding sequence to the common dimensionality. Both adapters
consist of a two-layer perceptron with a layer size of 512 and a rec-
tified linear unit (ReLU) as activation function after the first layer.
We use the average of all embeddings in a sequence as the final
representation.

The system is optimised by minimising the contrastive loss with
the Adam algorithm [17] (o« = 0.001, 31 = 0.9, B2 = 0.999, and
¢ = 10™®). To form a minibatch we randomly select 32 audio-text
pairs from the training set. Every epoch the mAP@10 metric is
computed on the validation dataset. The training is stopped if no
improvement was found for 10 epochs and the model weights are
reverted to the checkpoint of the epoch with the highest score.

3.4. Submitted systems

We submit four different configurations of our system. All share
the same model hyperparameter configurations but differ in the way
the available training data was used to train them. Specifically, we
experiment with:

1. adding no external dataset in our training,

2. extending the training data with noisy data from the FSD50k
dataset,

3. pretraining with noisy and clean data and later fine-tuning
with clean data only,

4. and pretraining exclusively with noisy data and fine-tuning
with clean data only.

In every training (also if we refer to it as pretraining or fine-
tuning), we follow the optimisation procedure described above.

ATAE: Aligned Text and Audio Embeddings In its standard
configuration, our system is trained solely with the challenge devel-
opment dataset Clotho. We refer to it as “Aligned Text and Audio
Embeddings” or ATAE for short.

ATAE-ET: Aligned Text and Audio Embeddings — Extended
dataset for Training Next, we want to investigate if adding extra
training data helps to improve retrieval performance. To achieve
this we combine the noisy FSD50k and the clean Clotho data into a
single training dataset.

Pretrained weights can be found at: https://doi.org/10.
5281/zenodo.3987831

ATAE-EP-F: Aligned Text and Audio Embeddings — Extended
dataset for Pretraining — Fine-tuning To balance out the poten-
tial negative effects of the noise in the training data, we fine-tune
the trained ATAE-ET model by again training with the clean Clotho
dataset.

ATAE-NP-F: Aligned Text and Audio Embeddings — Noisy
dataset for Pretraining — Fine-tuning Finally, to be able to bet-
ter judge the effect of the noisy data for pretraining, we use the
datasets in two separate training stages. We first train a model on
the noisy data and then fine-tune it on the clean dataset.

4. RESULTS

Table 2 compares the metrics achieved on the challenge develop-
ment test set for our four systems with the challenge baseline. We
follow the lead of the challenge organisers and report a jackknife
approximated 95% confidence interval for each metric [18]. Based
on the results, we make the following observations. First, our ap-
proach produces good quality results even in the standard training
setup (ATAE). Second, extending the challenge dataset with addi-
tional (noisy) training data (ATAE-ET) significantly degrades re-
trieval performance. Third, even fine-tuning the second system on
the clean challenge dataset seems to give worse results in compar-
ison with simply training only with the challenge dataset (ATAE).
Fourth, our system first pretrained with noisy data only and then
fine-tuned on the challenge dataset (ATAE-NP-F) improves on the
performance of the first experiment but only slightly. Finally, all of
our submitted systems surpass the challenge baseline in each metric
by a comfortable margin.

Since the metrics of our best system lie within the confidence
intervals of the next best system and vice versa, we conclude that
no significant difference is measurable between them. These results
lead us to the conclusion that no apparent advantage exists for our
method in utilising additional noisy training data, as was hoped.

5. CONCLUSION

We presented our submission for the Language-based Audio Re-
trieval subtask of the DCASE2022 challenge. Our approach con-
sists of extracting embeddings for the text and the audio through
pretrained encoder models and mapping these embeddings to a
shared space with a cross-modal alignment procedure. We achieve
the best results on the development test set with a model pretrained
with noisy text-audio data collected from a Freesound dataset.
However, we did not find a significant improvement in comparison
to a model that was trained only using the challenge development
dataset.
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