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ABSTRACT

Emitted machine sounds can change drastically due to a change in
settings of machines or due to varying noise conditions. This is a
problem when monitoring the condition of these machines with a
trained anomalous sound detection system because after changing
the acoustic conditions the normal sounds are often falsely marked
as anomalous. The goal of task 2 “Unsupervised Anomalous Sound
Detection for Machine Condition Monitoring Applying Domain
Generalization Techniques” of the DCASE 2022 challenge is to de-
velop systems that reliably detect anomalous sounds regardless of
whether characteristics of machine sounds are changing or not. In
this work, a conceptually simple outlier exposed anomalous sound
detection system is presented that is specifically designed for do-
main generalization. To this end, multiple feature representations
and carefully designed sub-system architectures are utilized inside
a single neural network. Furthermore, a technique called domain
mixup is presented to further improve the domain generalization
capabilities.

Index Terms— anomalous sound detection, domain general-
ization, domain shift, machine listening

1. INTRODUCTION

The goal of anomalous sound detection (ASD) is to recognize
sounds substantially differing from normal sounds that are fre-
quently encountered. Depending on the particular application,
defining which sounds exactly should be considered normal can be
challenging. In the context of machine condition monitoring, defin-
ing the normal class is relatively simple: Sounds emitted by ma-
chines that are properly working are normal, any deviations from
the intended behaviour indicate mechanical failure and resulting
sounds should be considered anomalous.

Research of ASD for machine condition monitoring is heav-
ily promoted through tasks of the annual DCASE challenge [1, 2].
These ASD tasks are in a semi-supervised setting, meaning that
only normal data is available for training the system. In 2021,
the ASD task focused on ASD in domain-shifted conditions. This
means that there are two data domains differing in acoustic condi-
tions or machine attributes as for example speed or size: a source
domain with many training samples and a target domain with only
very few training samples. The goal is to adapt an ASD system
trained on data belonging to the source domain to also work in the
target domain. This prevents the need to collect new recordings
of machines and retraining an ASD system when changing machine

settings or noise conditions. The ASD system described in this work
is designed for task 2 of the DCASE 2022 challenge, titled “Unsu-
pervised Anomalous Sound Detection for Machine Condition Mon-
itoring Applying Domain Generalization Techniques” [3]. The ma-
jor difference between domain generalization [4] and domain-shift
is that an ASD system should correctly detect anomalies regardless
of whether sounds belong to the source or any target domain. Thus,
when detecting anomalous sounds knowledge about the domain is
not available and the same model and decision threshold for detect-
ing anomalies must be used for source and target domains.

The dataset of the DCASE 2022 challenge task 2 consists
of sounds from the machine types “bearing”, “fan”, “gearbox”,
“slider”, “valve” from MIMII DG [5], and “ToyCar”, “ToyTrain”
from ToyADMOS2 [6]. For each machine type, there are 6 differ-
ent subsets of the dataset called sections, of which three belong to
a development set and the other three belong to an evaluation set,
corresponding to different types of domain shifts. For each sec-
tion, there are 990 normal training samples belonging to the source
domain, 10 normal training samples belonging to a target domain
and 200 test samples each belonging to one of the domains. Fur-
thermore, some attribute information are given for normal training
samples defining states of the machines or different types of noise.
All recordings include real factory noise, have a length of 10 sec-
onds and a sampling rate of 16 kHz.

There are two main state-of-the-art strategies to train an ASD
system. Both are realized as baseline systems by the organizers of
the challenge. First, an autoencoder can be trained with normal data
belonging to a single machine only. Assuming that anomalous data
substantially differs from normal data and thus cannot be recon-
structed as well as normal data, the reconstruction error can then be
used as an anomaly score. Second, a model can be trained to dis-
criminate among different machine types or among other acoustic
characteristics such as different machine settings or noise condi-
tions. Here, the assumption is that the information needed for cor-
rectly classifying the sounds is also sufficient to detect anomalous
sounds. This is called an outlier exposed ASD system [7].

The main contribution of this work is to present an outlier ex-
posed anomalous sound detection system with strong domain gen-
eralization capabilities in machine condition monitoring 1. The sys-
tem is conceptually simple since its architecture and hyperparame-
ter settings are the same for each machine type. Furthermore, no ex-
ternal data resources have been used to train the system or augment
the data. The most important and novel design choices of the sys-

1An open-source implementation of the proposed system is available at:
https://github.com/wilkinghoff/dcase2022

https://github.com/wilkinghoff/dcase2022
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tem are the following: First, multiple input feature representations,
namely log-mel spectrograms as well as magnitude spectra are used.
Second, the network architectures are carefully designed to avoid
learning trivial mappings to hyperspheres and thus less meaningful
embeddings. Last but not least, a simple technique called domain
mixup for improving the domain generalization capabilities when
estimating the distribution of the embeddings is proposed.

2. PROPOSED SYSTEM

The overall architecture of the proposed system is shown in Fig. 1.
All details of the individual blocks can be found in the following
subsections.

2.1. Data preprocessing

The system utilizes two different feature representations derived
from the raw waveforms. First, log-mel spectrograms with a
Hanning-windowed DFT length of 1024, a hop size of 256 and 128
mel bins are used as done in many state-of-the-art ASD systems
[8, 9, 10, 11, 12]. Second, magnitude spectra of the entire signals,
denoted by DFT representations, are used to better capture the char-
acteristics of machines that emit a relatively stationary sound as for
example fans. To reduce acoustic differences between source and
target domains, sample-wise temporal mean normalization similar
to cepstral mean normalization (CMN) [13] is applied to the log-
mel spectrograms.

2.2. Neural network architecture

The neural network for extracting the embeddings consists of two
different sub-networks for each input representation and is trained
to jointly discriminate among the machine types, sections and dif-
ferent attribute information about the machines resulting in a total
of 342 classes. In contrast to [9], where multiple networks or loss
functions have been used for different classification tasks, this train-
ing strategy is much simpler. Thus, all information given for the
normal training data needs to be captured inside the embeddings.
Since both input representations have entirely different dimensions,
two different neural network architectures are used for further pro-
cessing. The sub-network used for the log-mel spectrograms is
based on a modified ResNet architecture [14] and is described in
Tab. 1. The same architecture has been successfully applied for
ASD with a sub-cluster AdaCos loss in [9] and for ASD with do-
main adaptation [10]. For the DFT representations, the sub-network
consists of three one-dimensional convolutions and five dense lay-
ers as shown in Tab. 2.

Both sub-network architectures have been carefully designed to
avoid learning trivial mappings to hyperspheres for specific classes
as done in networks for deep one-class classification [15]. This
means that 1) no bounded non-linearities, 2) no bias terms and 3)
no trainable hypersphere centers are used. Instead, for 1) we only
leaky rectified linear units (LeakyReLU) with α = 0.1 [16] as non-
linearities and for 3) we randomly initialize the cluster centers of
the sub-cluster AdaCos loss without adapting them during train-
ing. A random initialization of the cluster centers is not a prob-
lem, since the embeddings and the cluster centers live in a relatively
high-dimensional space (256 dimensions) and thus are very likely to
be pairwise orthogonal. Furthermore, no batch normalization (BN)
[17] is applied inside the convolutional blocks but only before the
blocks or after the flattening layer.

Table 1: Modified ResNet architecture for log-mel spectrograms.
layer name structure output size

input BN (temporal axis) 622× 128
2D convolution 7× 7, stride= 2 311× 64× 16

residual block
(
3× 3
3× 3

)
× 2, stride= 1 155× 31× 16

residual block
(
3× 3
3× 3

)
× 2, stride= 1 78× 16× 32

residual block
(
3× 3
3× 3

)
× 2, stride= 1 39× 8× 64

residual block
(
3× 3
3× 3

)
× 2, stride= 1 20× 4× 128

max pooling 20× 1, stride= 1 1× 4× 128
flatten BN 512
dense (embedding) linear 128

Table 2: Network architecture for DFT representations.
layer name structure output size

input - 80000
1D convolution 256, stride= 64 1250× 128
1D convolution 64, stride= 16 40× 128
1D convolution 16, stride= 4 10× 128
flatten - 1280
dense BN, Leaky ReLU 128
dense BN, Leaky ReLU 128
dense BN, Leaky ReLU 128
dense BN, Leaky ReLU 128
dense (embedding) linear 128

The output of both sub-networks, which can both be interpreted
as embeddings by themselves, are concatenated in order to obtain a
single embedding for each file. This concatenation ensures that both
networks capture all information needed to discriminate among the
classes present in their respective feature representations. There-
fore, the embeddings are more sensitive to anomalous sounds than
when giving the network the freedom to utilize only a single feature
representation (e.g. by taking the sum) because specific anomalies
may be clearly apparent in only one of the two input representations.

Most outlier exposed ASD systems utilize angular margin
losses such as ArcFace [18] or AdaCos [19], to train a network for
extracting embeddings. AdaCos is based on an adaptive scale pa-
rameter and does not require any tuning of hyperparameters. Here,
sub-cluster AdaCos [9] with 16 sub-clusters, which is an extension
of AdaCos [19] specifically designed for ASD tasks, has been used.
The main idea of the sub-cluster AdaCos loss is to use multiple clus-
ters per class instead of a single one in order to learn more complex
distributions for the resulting embeddings. Embeddings obtained
with this loss have been shown to outperform embeddings obtained
with regular AdaCos for ASD tasks [9]. The entire network is im-
plemented using Tensorflow [20] and is trained for 400 epochs with
a batch size of 64 using Adam [21]. For data augmentation, only
mixup [22] with a uniformly distributed mixing coefficient is used.

2.3. Calculating anomaly scores

In [9], it has been shown that using Gaussian mixture models
(GMMs) with a full covariance matrix for estimating the distribu-
tion of the embeddings and calculating anomaly scores results in
a better ASD performance than taking other backends such as co-
sine similarity. Hence, GMMs with 16 Gaussian components and
a regularized covariance matrix by adding 10−3 to the diagonal as
implemented in scikit-learn [23] are trained and their resulting log-
likelihood values are used as anomaly scores. This strategy has
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jointly trained to discriminate among machine ids and different attribute
information of all machine types by minimizing the sub-cluster AdaCos loss
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Figure 1: Structure of the proposed anomalous sound detection system.

also been applied in domain-shifted conditions by estimating mul-
tiple distributions for combinations of machine types and sections,
source and target domains, and attribute information [10]. Since the
system proposed in this work is specifically designed for domain
generalization and thus domain knowledge is not available during
testing, only one GMM is trained for each combination of machine
type and section resulting in a total of 21 GMMs for the develop-
ment and 21 GMMs for the evaluation set. Note, that it is also pos-
sible to estimate whether a sample belongs to the source or target
domain and train different models for each domain but this would
contradict the goal of domain generalization and is the reason why
we did not employ such a strategy.

To further improve the domain generalization capabilities, we
propose a technique called domain mixup when training the GMMs.
For each combination of machine type and section, every embed-
ding corresponding to a normal training sample of the source do-
main is mixed with a random sample of the target domain by tak-
ing the mean of both embeddings. Therefore, essentially there is
an additional copy of each sample belonging to the source domain
consisting of a mixed-up sample with the target domain. Then, each
GMM is trained with these mixed-up samples as well as the original
samples from the source domain. This procedure is a simple way
to generate additional training samples belonging to the correct ma-
chine type and section but neither belonging to the source nor to the
target domain. Thus, by using these newly generated samples a dis-
tribution of the embeddings that is more independent of the domain
can be learned.

2.4. Ensembling strategy

To improve the performance of the system, a similar ensembling
strategy as used in [10] has been applied. More concretely, the pro-
posed system is trained ten times and after every 100 of the 400
training epochs the model is stored. Thus, in total 10× 4 = 40 dif-
ferent models and corresponding sets of embeddings are obtained.
In contrast to [10], the same number of sub-clusters in the sub-
cluster AdaCos loss is used, namely 16, when retraining the sys-
tem. For each set of embeddings, another GMM is trained using all
embeddings belonging to a single section and machine type. The
sum of the resulting log-likelihoods is taken to obtain a single ASD
score for this combination of section and machine type.

2.5. Setting decision thresholds

For setting decision thresholds, the 90th percentile of the anomaly
scores of all normal training samples belonging to a given section
is calculated. All anomaly scores of test samples belonging to the
same section that are above this threshold are marked as anomalous.
This is the same strategy as applied in [10].

2.6. Submissions

For the challenge, two slightly different systems have been submit-
ted. The first system is the proposed system as described before.
As a small deviation from this, the same system has been submit-
ted without applying domain mixup when calculating the anomaly
scores in order to investigate the impact of domain mixup on the
ASD performance.

3. RESULTS

The ASD results obtained on the development set with the proposed
system compared to both baseline systems can be found in Tab. 3. It
is clearly visible that the proposed system significantly outperforms
both baseline systems in terms of AUC and pAUC scores regard-
less of machine type and domain. Since random guessing corre-
sponds to an AUC score of 50%, both baseline systems fail mis-
erably when predicting anomalous machine sounds for some target
domains. One example is the target domain of section 2 belong-
ing to the machine type “ToyTrain” where the autoencoder baseline
system has an AUC of less than 15% and the MobileNetV2-based
system as an AUC score of less than 45%. In contrast to that, the
proposed system in many cases has a performance close to the one
obtained in the source domain and always performs at least as well
as random guessing. However, in some cases there is still a substan-
tial performance gap e.g. for the machine type “ToyTrain”, section
0 or 1. Still, the domain generalization capabilities of the proposed
system, which is the main focus of this challenge, are far superior
to those of the baseline systems.

4. CONCLUSIONS

In this work, a conceptually simple outlier exposed anomalous
sound detection system with strong domain generalization capabil-
ities submitted to the DCASE challenge 2022 has been presented.
The system is based on a neural network trained with the sub-cluster
AdaCos loss to extract discriminative embeddings and consists of
two carefully designed sub-systems utilizing log-mel spectrograms
and magnitude spectra as input feature representations. To improve
the domain generalization capabilities, a simple technique called
domain mixup, which mixes samples of the source and target do-
main when estimating the distribution of the embeddings with a
GMM to obtain anomaly scores, has been presented. No exter-
nal data has been used to augment data samples or train the sys-
tem. In experiments conducted on the development dataset be-
longing to task 2 “Unsupervised Anomalous Sound Detection for
Machine Condition Monitoring Applying Domain Generalization
Techniques” of the DCASE 2022 challenge, it has been shown that
the proposed system significantly outperforms both baseline sys-
tems on source as well as target domains for each machine type.
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Table 3: AUCs and pAUCs per machine type obtained with both baseline systems and the proposed system. The last row for each machine
type contains the harmonic mean of the values for all three sections obtained with a single threshold for source and target domain. Highest
AUCs and pAUCs in each row are underlined.

dataset split baselines proposed systemautoencoder MobileNetV2
machine type section domain AUC pAUC AUC pAUC AUC pAUC

ToyCar 0 source 84.64% 68.00% 48.50% 49.68% 83.52% 72.42%
ToyCar 0 target 39.50% 49.89% 49.64% 48.74% 74.00% 56.84%
ToyCar 1 source 86.04% 74.74% 58.36% 51.26% 80.00% 52.42%
ToyCar 1 target 38.64% 51.47% 58.62% 49.05% 59.96% 53.05%
ToyCar 2 source 98.66% 94.74% 72.74% 81.05% 99.64% 98.32%
ToyCar 2 target 32.56% 52.32% 43.88% 49.05% 88.32% 67.37%
ToyCar harmonic mean mixed 63.30% 53.09% 54.92% 49.85% 81.16% 63.99%

ToyTrain 0 source 68.58% 71.79% 51.40% 47.79% 69.88% 61.89%
ToyTrain 0 target 31.38% 49.68% 40.14% 52.00% 54.60% 49.89%
ToyTrain 1 source 80.78% 69.05% 76.18% 70.11% 92.64% 83.79%
ToyTrain 1 target 29.46% 49.89% 45.82% 50.00% 54.08% 50.11%
ToyTrain 2 source 84.66% 78.53% 70.00% 55.16% 99.92% 99.58%
ToyTrain 2 target 14.28% 48.21% 39.42% 53.47% 87.32% 73.05%
ToyTrain harmonic mean mixed 51.40% 50.39% 53.08% 51.18% 70.22% 55.77%

bearing 0 source 52.56% 56.74% 77.60% 62.11% 61.56% 62.53%
bearing 0 target 63.28% 49.79% 73.24% 64.74% 63.56% 53.05%
bearing 1 source 75.22% 65.79% 70.88% 64.11% 78.12% 64.00%
bearing 1 target 62.60% 55.58% 70.38% 61.05% 88.92% 80.00%
bearing 2 source 39.42% 47.89% 71.18% 53.89% 84.76% 71.58%
bearing 2 target 46.20% 50.74% 52.90% 50.63% 76.04% 68.84%
bearing harmonic mean mixed 54.41% 51.96% 68.91% 58.32% 73.88% 63.38%

fan 0 source 84.04% 81.37% 76.08% 65.26% 99.84% 99.16%
fan 0 target 34.90% 60.42% 50.76% 51.16% 93.56% 82.11%
fan 1 source 72.20% 54.00% 67.26% 49.68% 95.04% 92.00%
fan 1 target 44.98% 51.68% 39.90% 50.63% 71.64% 51.58%
fan 2 source 78.74% 73.16% 81.88% 73.89% 88.04% 83.79%
fan 2 target 64.60% 60.21% 68.36% 64.42% 86.64% 72.42%
fan harmonic mean mixed 62.71% 58.36% 62.84% 55.42% 90.66% 78.88%

gearbox 0 source 64.02% 64.42% 48.22% 56.32% 87.88% 78.11%
gearbox 0 target 64.08% 60.84% 52.26% 56.84% 82.88% 74.11%
gearbox 1 source 68.14% 54.63% 51.26% 54.53% 90.64% 72.21%
gearbox 1 target 57.74% 53.16% 56.64% 56.73% 83.96% 54.53%
gearbox 2 source 75.24% 66.00% 77.20% 75.05% 86.68% 78.11%
gearbox 2 target 65.96% 60.53% 36.78% 49.47% 88.84% 57.47%
gearbox harmonic mean mixed 65.70% 59.32% 53.58% 53.99% 85.39% 68.64%

slide rail 0 source 80.88% 71.26% 94.32% 83.26% 98.52% 96.00%
slide rail 0 target 56.50% 54.95% 84.16% 64.95% 91.12% 65.26%
slide rail 1 source 67.96% 52.00% 45.04% 48.21% 99.60% 97.89%
slide rail 1 target 49.58% 53.37% 22.67% 47.37% 93.40% 85.89%
slide rail 2 source 87.28% 66.95% 85.50% 72.95% 84.44% 82.95%
slide rail 2 target 38.60% 52.84% 24.20% 47.89% 78.84% 69.05%
slide rail harmonic mean mixed 63.21% 56.09% 50.88% 53.96% 89.06% 75.81%

valve 0 source 54.40% 54.84% 64.22% 62.53% 99.72% 98.53%
valve 0 target 52.20% 50.42% 41.28% 53.47% 75.92% 64.63%
valve 1 source 50.28% 49.37% 59.54% 56.53% 86.84% 77.05%
valve 1 target 51.54% 50.32% 67.14% 56.53% 100.00% 100.00%
valve 2 source 51.50% 48.74% 77.16% 85.79% 99.04% 94.95%
valve 2 target 43.62% 49.79% 77.40% 85.79% 66.12% 71.37%
valve harmonic mean mixed 50.48% 50.29% 62.91% 63.44% 90.00% 80.34%

all harmonic mean mixed 58.13% 54.00% 57.52% 54.86% 82.18% 68.48%
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