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ABSTRACT

In this technical report we describe our few-shot sound event de-
tection (SED) systems used to generate predictions for the DCASE
2022 task 5 challenge. At the core of the SED systems is a wider
variant of ResNet-18, i.e., each block throughout the depth of the
network have more convolutional filters. In addition to this, for one
of the submissions we include what we believe to be a novel ap-
proach to semi-supervised learning for prototypical networks. For
both the fully supervised and semi-supervised methods we show-
case the importance of calibrating the probability thresholds in the
few-shot learning tasks, and provide a simple implementation of
how to find these.

Index Terms— CNN, Prototypical networks, Semi-supervised,
Probability calibration

1. INTRODUCTION

This technical report provides an outline of our four submissions.
The submissions are named as follows:

• willbo supervised 1
• willbo supervised 2
• willbo semi 1
• willbo semi 2

All submissions are based on prototypical networks [1] and share
network architecture for the embedding function, which is de-
scribed in Section 3. Other similarities between the submissions
are described in Section 4.

The submissions titled * 2 use an adaptive threshold method
described in Section 6 while submissions titled * 1 do not. Submis-
sions titled * semi * make use of a semi-supervised prototypical
network method described in Section 5.

2. DATA

Only the provided development set for the DCASE 2022 Task 5
challenge was used in training and validating the systems used for
submissions.

The audio files in the Development and Evaluation sets were
pre-processed in the same fashion as for the deep learning (proto-
typical network) baseline, with the exception of the librosa core
PCEN implementation parameters. These were set to:
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• gain : 0.8
• bias : 10
• power : 0.25
• time-constant : 0.06
• eps : 1e-6

This was done for all three sets ( training, validation, and evalua-
tion).

3. BACKBONE

For the backbone, the embedding function in the prototypical net-
work setup, a modified ResNet-18 [2] model was used. First, in-
stead of having three channels in the input, one channel was used.
This is because the spectrograms fed to the network only have one
channel depth-wise. Second, a larger (4x) amount of filters per
block was used, resulting in a wider network. The network has
approximately 180M parameters.

4. SHARED METHODOLOGY OF SUBMISSIONS

For all submissions, the predictions for test audio segments were
made with a negative prototype based on an average of the whole
test audio file, instead of a random sampling as done in the deep
learning baseline for the challenge. The positive prototype was
made with all available segments resulting from pre-processing the
audio from the five provided annotations. That is, for audio files
with longer events resulting in more than five spectrograms, all
spectrograms were averaged over to create the positive prototype.

All submissions use the same post-processing, which consists
of filtering short events (as done in the deep learning baseline), and
median filtering with a window size set to one third of the average
event length based on the first five annotations.

5. SEMI-SUPERVISED PROTOTYPICAL NETWORKS

This approach relies on the assumption that two temporally neigh-
bouring audio segments share the same semantics. This assump-
tion is likely to hold for recordings mostly containing background
noise such as rain, wind and other natural phenomena. It also holds
mostly true for events of lengths longer than the segment length of
0.2s, especially when considering the substantial overlap between
segments. Including unlabeled parts of the audio segments with this
in mind could enable a learner to make use of more of the provided
data. This can be done by including unlabeled support and query
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Figure 1: Overview of our training method for the submissions ti-
tled * semi *. Base set: Annotated segments of audio files cor-
responding to events (not background) colored in green and blue.
Unlabeled segments (background) are colored in gray. Few-shot
tasks: The support (annotated segments) in the beginning of the au-
dio files are colored in yellow and orange. The rest of the audio
files do not have annotations and are typically not included during
training on the base set. In contrast, we propose to take advantage
of the structure that exists also in this unlabeled data. To do this, lo-
cations (marked L0, L1, . . . , Lk) in the audio files of both sets are
first sampled uniformly at random. At these locations consecutive
segments (pink) are then extracted to constitute ’unlabeled’ support
and query sets, Si and Qi, from location Li. These are finally in-
cluded in an episode during training on the base set, just as if they
were samples from an additional class.

sets in the episodic training scheme. See Figure 1 for a visualiza-
tion of this. Note that such unlabeled support and query sets were
sampled only from the base data set for this challenge, in contrast
to what the figure shows.

For ecoacoustic recordings it may not be uncommon that two
random audio segments from a recording environment are simi-
lar even though they are temporally separated – this is true for a
recording that contains an hour of rain, for example. Including the
suggested unlabeled support and query samples in the prototypical
network loss, see equations (1) and (2), would lead to the prototypes
based on these to be treated as different sound events and therefore
pushed apart in the embedding space. We therefore introduce an
alternative to the prototypical loss which is more suited for this sce-
nario. This loss encourages distance between a labeled prototype
and all other prototypes in the embedding space, while an unlabeled
prototype is only encouraged to be distant from other labeled proto-
types. See (3), where Ql is the set of queries from labeled segments
of the base data set, Qu is the set of queries from unlabeled seg-
ments, Cl is the set of prototypes based on labeled support samples,
and Cu is the set of prototypes based on unlabeled support samples.

pϕ(y = k | x) = exp (−d (fϕ(x), ck))∑
k′ exp (−d (fϕ(x), ck′))

(1)

L(ϕ) = − log pϕ(y = k | x) (2)
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Figure 2: Impact on F-measure for different values of the threshold
value used in audio segment classification at test time for one audio
file in the validation set, R4 cleaned recording TEL 20-10-17.wav

L(ϕ) = − log

(
1(x ∈ Ql)

exp (−d (fϕ(x), ck))∑
k′∈Cl∪Cu

exp (−d (fϕ(x), ck′))

+ 1(x ∈ Qu)
exp (−d (fϕ(x), ck))∑

k′∈Cl∪{k} exp (−d (fϕ(x), ck′))

)
(3)

The loss (3) has two inner components, one active for labeled query
points from the base data set and one active for query points for
which we have no label information.

6. PROBABILITY CALIBRATION

At test time an audio segment is classified as either containing the
event of interest or being background. This is based on the represen-
tation of the segment in the embedding space and the distances of
this point to the positive and negative prototypes. Let d(fθ(x), cp)
and d(fθ(x), cn), respectively, denote these distances, where cp and
cn represent the prototypes in the embedding space. A softmax
function is then applied to the distances, and the value representing
the query’s probability to contain an event is used and compared
to a threshold. This is the same procedure used in the deep learn-
ing baseline. See (4) for a description of the classification func-
tion, where p(y = 1|x) is the softmax over the distances and δ is a
threshold.

1 [p(y = 1|x) > δ] (4)

What the threshold δ should be for best downstream perfor-
mance is not obvious. However, not using the default value of = 0.5
could lead do better predictions in the downstream task, as shown in
Figure 2, where F-measures are calculated for a number of different
threshold values for one of the few-shot tasks in the validation set.
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How to find the threshold which yields the best result is not triv-
ial given the limited amount of training data for the few-shot tasks.
Given the event length for an audio file in the validation set, the
pre-processing results in a set X of positives (spectrograms of au-
dio segments) of varying sizes. For example, audio files with very
short events typically result in the same amount of spectrograms as
annotations, for this challenge five. However, for audio files with
longer events we get |X | > 5. In addition to this set we also have a
set of negatives N ; these are the parts of the audio file which are in
between the five first annotations and serve as hard negatives. Given
these sets we fit a logistic regression model using scikit-learn [3].
This is done by first uniformly sampling half of the data points in X
to serve as a positive prototype Xp, while the remainder will be used
as training data X p

t . This is followed by sampling |X p
t | data points

from N with replacement to achieve a balanced learning problem;
we denote this set as Xn

t . Note that the negative prototype based
on the audio file is used here and not the one based on N . Given
the prototypes and these data points we get probabilities of a seg-
ment belonging to the positive class using a softmax, as described
in Section 6. Given the fit of the logistic regression model on this
one dimensional data we get a threshold which yields the highest
accuracy on the training data. This procedure was repeated and an
average taken.

With δ∗ denoting the learned threshold, we finally set the
threshold for a given audio file according to (5), where l is given in
(6). This is done because the fitting resulted in very poor thresholds
for audio files with extremely short event lengths, i.e., audio files
which are associated with small X sets.

δfinal = (1− l) ∗ 0.5 + l ∗ δ∗ (5)

l = tanh (0.05 ∗ (|X | − 5)) (6)

7. RESULTS

The results for the four different submissions on the validation set
can be seen in Table 1. The submission willbo supervised 2, which
uses an adaptive threshold at test time, achieves the best total F-
measure of 57.55%.

Table 1: F-measure for the subsets and for the whole validation set
for the four submissions.

Method PB ME HB Total

willbo supervised 1 39.3 75 51.02 51.39
willbo supervised 2 40.71 77.31 68.36 57.55
willbo semi 1 35.29 75.79 56.87 50.78
willbo semi 2 29.12 77.78 65.98 47.94
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