
Detection and Classification of Acoustic Scenes and Events 2022 3–4 November 2022, Nancy, France

TEXT-TO-AUDIO RETRIEVAL VIA LARGE-SCALE CONTRASTIVE TRAINING

Yusong Wu1,2∗, Tianyu Zhang1,2,∗, Ke Chen3,∗,

1 Université de Montréal
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ABSTRACT
Although there is an abundance of data available on the internet,
audio data is still limited in terms of dataset size and label preci-
sion. Scaling the size of audio datasets would therefore be one of
the most valuable ways to develop models for better audio under-
standing. In this report, we propose a pipeline to better learn the au-
dio understanding mechanism by combining audio data with more
abundantly available natural language descriptions. We collected a
mixed dataset consisting of over 2 million data pairs and trained
a contrastive model based on Contrastive Language–Image Pre-
training (CLIP) in order to discover correspondence between audio
and text. As an audio encoder, we use HTS-AT as a transformer-
based model and PANN and a CNN-based model, and as a text
encoder, we employ the frozen pre-trained CLIP text encoder. The
resulting models are submitted to Task 6B of the DCASE 2022 chal-
lenge and achieve a mAP@10 score of at least 0.214.

Index Terms— Contrastive Learning, Audio Understanding,
Text-to-audio Retrieval

1. INTRODUCTION

Data is the lifeblood of modern deep learning models. However,
audio data is haunted by the limited amount of training data, which
is the result of costly data collection and labor-intensive data label-
ing. Despite this, audio data is one of the most prevalent data in the
internet. Thus, training on audio available on the internet without
the need of any supervision would be of great help to learn a good
audio understanding model.

A successful solution for training on “data in the wild” is multi-
modal contrastive training, symbolized by the recently proposed
Contrastive Language–Image Pre-training (CLIP) [1]. CLIP learns
the correspondence between text and image by projecting them into
a shared latent space and employing contrastive learning by treat-
ing the ground-truth image-text pair as the positive sample and all
others as negative samples. Unlike training on the single modal
data in an unsupervised manner [2, 3, 4], the training paradigm of
CLIP is not limited by training labels (class label, caption or file-
name) and shown its strong capability in robustness. Additionally,
multi-modal training in CLIP also shows great success in down-
stream tasks such as information retrieval [5], text-guided genera-
tion [6, 7, 8] or captioning [9] that are benefited most from learning
with natural language supervision.

In this report, we follow the insights of CLIP and propose to
train models on a large mixed dataset of audio-text pairs to combat
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data scarcity. We collect more than 2 million data pairs consisting
of 6182 hours of audios from publicly available datasets, websites
and sound effect libraries. To train models on such mixed dataset,
we refer to the architecture from CLIP, adapt it as a Contrastive
Language–Audio Pre-training (CLAP) model. There are exist-
ing works on audio-text contrastive learning or expanding CLIP to
audio domain [10, 11, 12, 13]. On the basis of similar insights, the
proposed model is trained with natural language descriptions as text
supervision other than limited in class labels.

We adopt a CNN-based model — PANN [14], and a
transformer-based model — HTS-AT [15], as our choices of au-
dio encoder to encode the audio data, while loading and freezing
the pre-trained text encoder from CLIP to encode the text data. The
whole CLAP model is used for DCASE 2022 Task 6B “Language-
Based Audio Retrieval”. We ensemble models of different set-
tings to construct 4 systems for submission, and report text-to-
audio retrieval performance for each submission system on Clotho
dataset [16], resulting in the best mAP@10 score of 0.214. The
code for the proposed system is open-source online1.

2. DATASET AND DATA LOADING

2.1. Dataset

We collect a mixed dataset to train the CLAP model. The mixed
dataset consists of more than 2 million audio tracks in a total dura-
tion of 6182 hours and their corresponding texts. The detail of these
data is listed in Table 1. For Clotho, AudioCaps and AudioSet, we
use their designated validation and test sets. For other data sources,
we randomly split 90% of data as training set (shown in Table 1),
and the left 10% as test set.

2.2. Data Pre-process

The goal of the data pre-processing is to convert audios and labels
from different datasets into a unified and generic format stored on
the file system for loading by various models.

For audio files in each dataset, we convert them into Free Loss-
less Audio Codec (FLAC) format with 48kHz sample rate, in order
to reduce the information loss and save the storage space (cf. wav.
format).

For labels, tags, or captions, we store them into json files. For
datasets with only labels (e.g., AudioSet), we prompt them into text
by placing the label as “Sound of label1, label2, and label3, ..., and
so on”.

1https://github.com/LAION-AI/CLAP
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Work Dataset # of Samples Duration (hours) Data Used

Lee et al. [10] VGGSound [17] 200,000 555.56 Labels, audio

Wav2CLIP [11] VGGSound [17] 200,000 555.56 Video frames, audio

Audioclip [12] AudioSet [18] 1,912,134 5311.48 Labels, audio

Ours BBC Sound Effects [19] 14,376 430.89 1 caption per audio, audio
Clotho [16] 3,839 23.99 5 captions per audio, audio

AudioCaps [20] 46,074 126.20 1 caption per audio, audio
AudioSet [18] 1,912,134 5311.48 Labels, audio

Free To Use Sounds [21] 5,733 158.15 Filename, audio
We Sound Effects [22] 439 10.24 Filename, audio

Paramount Motion Sound Effects [23] 4,439 17.45 Filename, audio
Sonniss Game Audio Effects [24] 5,005 76.91 Filename, audio

Table 1: The dataset used to train CLAP comparing to previous works.

2.3. Data Loading

The input to the model is log-mel-spectrogram (audio), and word
tokens (text). All the audio in 10 seconds with a sample rate of
48kHz, resulting in the sample length of 480,000. We adopt the
zero-padding for the audio shorter than 10 seconds and randomly
select 10 seconds piece for the audio longer than 10 seconds. When
converting audio to mel-spectrogram, we use 480 frame size and 64
frequency bins, resulting in a 2D matrix of shape (T = 1000, F =
64). For audio samples having more than one text captions, we
randomly select one of the caption each time when loading samples
from data. We augment the data by applying the frequency masking
on 8 bins and time masking on 128 frames.

3. MODEL

3.1. General Architecture

Figure 1 depicts the general architecture of our proposed Con-
trastive Language-Audio Pre-training (CLAP) framework. Com-
pared to the original CLIP architecture, we make two modifications
to adapt it to the contrastive framework between text and audio data.

The original image encoder is replaced with the audio encoder,
which will be introduced in the following section. The audio en-
coder can be selected from PANN [14], HTS-AT [15], and, if given,
other audio classification models. For the text encoder, we employ
the same model as demonstrated in OpenAI’s Vit-B-162 model
checkpoint. It is a transformer encoder with 12 layers, 8 heads, 77
context length, 512-dimensional hidden state, and 49408 words in
its vocabulary.

Second, to prevent interfering with the prior and to make the
model more robust, we freeze the text encoder’s parameters, as Ope-
nAI has already trained it on a significantly bigger text data set. In
the meantime, this freezing paradigm can also help us achieve se-
mantic latent space homology between learned audio and text em-
beddings.

3.2. Audio Encoder

For the choice of audio embeddings that used to perform the con-
trastive learning with text embeddings, we seek an embedding to

2https://openaipublic.azureedge.net/clip/models/
ViT-B-16.pt

model and characterize the acoustic features and semantic content
of audio. Audio classification is a typical task that refer to clas-
sify sound event labels of given audio samples. Therefore, we em-
ploy two audio classification models in our CLAP framework: (1)
Pretrained Audio Neural Networks (PANN) [14], as a CNN-based
audio classifier, and (2) Hierarchical Token-Semantic Audio Trans-
former (HTS-AT) [15], as a transformer-based classifier.

3.2.1. PANN

As shown in the left of Figure 2, PANN contains VGG-like CNNs
[25] to convert an audio mel-spectrogram into a (T,C) featuremap,
where T is the number of time frames and C is the number of sound
event classes. The structures of CNN blocks can be varied from
different numbers (e.g, CNN-6, CNN-10, CNN-14, etc.). In this re-
port, we use the CNN-14 structure, which contains 7 downsampling
CNN blocks and 7 upsampling CNN blocks to process the audio
spectrogram inputs. The model averages the featuremap over the
time axis to obtain a final probability vector (1, C) and computes
the binary cross-entropy loss between it and the groudtruth label.
Since CNNs can capture the information in each time window, the
featuremap (T,C) is empirically regarded as a presence probability
map of each sound event at each time frame. When determining
the latent source embedding for the following pipeline, the penulti-
mate layer’s output (T,L) can be used to obtain its averaged vector
(1, L) as the audio embedding. In this report, we set L = 2048
and C is not used in the training stage because we do not explicitly
train the audio encoder in the audio classification scenario (but in
the contrastive learning scenario with the text encoder).

3.2.2. HTSAT

HTS-AT is a hierarchical token-semantic transformer for audio clas-
sification. The token-semantic module [26] have been widely used
in the image classification and segmentation task and achieve better
performance. HTS-AT applies swin-transformer [27] and token-
semantic module into the audio classification task. In the right of
Figure 2, a mel-spectrogram is cut into different patch tokens with a
patch-embed CNN and sent into the transformer in order. The time
and frequency lengths of the patch is equal as P × P .

Further, to better capture the relationship between frequency
bins of the same time frame, HTS-AT first splits the mel-
spectrogram into windows w1, w2, ..., wn and then splits the
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Figure 1: The architecture of CLAP, to obtain the embedding from audio encoder and text encoder via contrastive learning.

patches in each window. The order of tokens Q follows
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Where t = T
P
, f = F

P
, n is the number of time windows, and q

wk
i,j

denotes the patch in the position shown by Figure 2.

The patch tokens pass through several network groups, each of
which contains several transformer-encoder blocks. Between every
two groups, a patch-merge layer is applied to reduce the number of
tokens to construct a hierarchical representation. Each transformer-
encoder block is a swin-transformer block with the shifted window
attention module [27], a modified self-attention module to improve
the training efficiency. As illustrated in Figure 2, the shape of the
patch tokens is reduced by 8 times from ( T

P
× F

P
, D) to ( T

8P
×

F
8P

, 8D) after 4 network groups.

Then, HTS-AT applies a token-semantic 2D-CNN [26] to fur-
ther process the reshaped output ( T

8P
, F
8P

, 8D) for the audio classi-
fication target. The audio embedding, at the same time, is produced
by averaging the reshaped output into a L-dimension vector with an
average-pooling layer. The structure of the swin transformer can be
varied from different capability (e.g., tiny, base, large, etc.). In this
report, we follow the tiny setting to set D = 96, L = 768, P = 4,
and the number of transformer blocks in 4 groups is 2, 2, 6, 2.

3.3. Training Paradigm

For training objectives, we add two MLP layers after the audio em-
beddings Ya = {ya1, ya2, ..., yam} and the text embeddings Yt as
Y m
a and Y m

b . According to [11], this would boost the converging
speed and we introduce a new clip loss function by computing the
original clip loss between different combinations of output embed-

dings:

L =
f(Ya, Y

m
t , o1) + f(Y m

a , Yt, o2)

2
(4)

f(a, b, o)local =
1

2N

N∑
i=1

CE(o · ai × b.T, l)

+ CE(o · bi × a.T, l)

(5)

f(a, b, o)global = CE(o · a× b.T, l) (6)

Where l is the label (i.e. the correct index of the audio/text embed-
dings, in here l is a diagonal matrix), o1 and o2 are learnable logit
parameters for scaling the cross entropy loss. CE() is the cross en-
tropy loss function. f is the function to compute the original CLIP
loss, which involves two formats: (1) The global format is to di-
rectly compute the CLIP loss, and (2) The local format is to deal
with the multi-GPU training, where the total batch embeddings Ya,
Yt, Y m

a and Y m
t are distributed into different sub-batches on dif-

ferent GPUs (e.g., Ya1, Ya2, ..., YaN , note that this is different from
the above ya1, ya2, ..., yam). Then, the local loss could compute
the CLIP loss between each sub-batches’ embeddings with the total
numbers of embeddings.

4. SUBMISSION

4.1. Metrics

We evaluate performance of the model according to retrieval-based
metrics. Specifically, we use mean rank, median rank, R@1, R@5,
R@10, and mAP@10 for both text-to-audio and audio-to-text re-
trieval as the metrics we monitor during training. Mean rank de-
fines the average rank of the ground truth for a specific query. Me-
dian rank defines the median of the rank of the ground truth for a
specific query. R@k calculates the recall score among the top-k re-
trieved results, averaged across all queries where k can be 1, 5 and
10. mAP@10 computes the average precision among the top-10
retrieved results defined by the query, averaged across all caption
queries. For each run, we save 3 models with best text-to-audio
mAP@10 performance on Clotho evaluation set.
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Figure 2: The network architecture of audio classification models. Left: PANN [14]; Right: HTS-AT [15]. All CNNs are named as [2D-kernel
size × channel size].

Model Mean Rank Median Rank R@1 R@5 R@10 mAP@10

Baseline - - 0.03 0.11 0.19 0.07
System 1 50.670 14.000 0.126 0.334 0.452 0.214
System 2 48.665 14.000 0.124 0.326 0.451 0.211
System 3 48.315 14.000 0.124 0.331 0.451 0.212
System 4 49.171 13.000 0.124 0.327 0.455 0.212

Table 2: The systems for submission and their text-to-audio retrieval performance on Clotho evaluation set.

4.2. Training Hyperparameters

For the training hyperparameters, we trained all models with the
AdamW [28] optimizer (β1 = 0.9, β2 = 0.999, ϵ = 1e − 8), the
learning rate 1e − 3, and the cosine annealing learning scheduler
with the warm-up step 10000. We implemented our proposed model
in PyTorch3 and trained it on 8 NVIDIA Telsa A-100 GPU. The
batch size is 1472 (184 × 8). All models are converaged in 400
epochs.

4.3. Submission Systems

We train 4 CLAP models with HTS-AT audio encoder by 4 different
random seeds, and 2 CLAP models with PANN audio encoder. In
our submission, we list 4 systems by ensembling these trained mod-
els with different settings, and report their text-to-audio retrieval
performance in Table 2:

• System 1: the ensemble model of all HTS-AT CLAPs and
PANN CLAPs;

• System 2: the ensemble model of all HTS-AT CLAPs;
• System 3: the ensemble model of all HTS-AT CLAPs and one

top-performance CNN CLAPs;
• System 4: the ensemble model of two top-performance HTS-

AT CLAPs and one top-performance CNN CLAPs.

For each model, we ensemble the first three checkpoints with top
text-to-audio mAP@10 score. The reason to choose these combi-
nations is to explore if CNN CLAPs and HTS-AT CLAPs learn dif-

3https://pytorch.org/

ferent understandings of audio data and text data and consider the
collaboration of two architectures.
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