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ABSTRACT
In this technical report, we describe our submitted systems for dcase
2022 Challenge Task4: Sound Event Detection in Domestic Envi-
ronments. Specifically, we submit two different systems respec-
tively for PSDS1 and PSDS2. As PSDS2 focuses on avoiding con-
fusion between classes rather than the localization of sound events,
we only predict weak labels of clips to improve PSDS2. More-
over, we apply the pretrained neural networks including PANNs and
SSAST in our systems to improve the generalization and robust-
ness of our models. These pretrained models trained on large-scale
datasets such as audioset can effectively alleviate the problems of
lack of real training data. We fuse multiple pretrained models to
make full use of the information of external data, which signifi-
cantly improve the performance of our systems. In addition, we
use various data augmentation techniques to expand provided data.
According to the character of each sound event, we use the class-
wise median filter and further classify some confusing events. As a
result, we achieve the best PSDS1 of of 0.481 and best PSDS2 of
0.826 on the DESED real validation dataset.

Index Terms— Sound Event detection, Semi-supervised learn-
ing, pretrained models

1. METHODS

1.1. Dataset

All of the dataset we use in our training are described as follows
[1]:

• Unlabeled in domain training set: 14412 clips
• Synthetic strongly labeled training set: 10000 clips
• Synthetic strongly labeled validation set: 2500 clips
• Weakly labeled training set: 1200 clips
• Weakly labeled validation set: 378 clips
• Strongly labeled test set: 1168 clips
• AudioSet strong training set: 2500 clips
• AudioSet strong validation set: 970 clips

We don’t use the audioset strong data in base system. In other sys-
tems, all of the datasets are used. In addition, we calculate the dura-
tion length and occurrences of ten event classes in strongly labeled
set and audioset strong set. The result of 4638 clips is shown in
Table 1.

Table 1: Duration Length and Occurrences of Ten Event Classes

Mean Mid Occurrences

Alarm bell ringing 2.14 1.03 2143
Blender 5.25 4.80 313
Cat 1.1 0.74 781
Dishes 0.55 0.33 2576
Dog 1.00 0.56 1949
Electric shaver toothbrush 7.05 8.96 279
Frying 8.23 10 620
Running water 6.11 6.09 833
Speech 1.59 1.04 9998
Vacuum Cleaner 7.86 9.97 178

It’s shown that ten event classes can be roughly divided into
two groups: long duration and short duration. The long duration
group includes Blender, Electric shaver toothbrush, Frying, Run-
ning water and Vacuum Cleaner, which generally last more than 5
seconds and occur less than 900 times. The short duration groups
includes Alarm bell ringing, Cat, Dishes, Dog, Speech, which gen-
erally last less than 2 seconds and occur more than 1000 times.

1.2. Weak Prediction

As PSDS2 focuses on avoiding confusion between classes rather
than the localization of sound events, we only predict weak labels of
clips and set timestamp to start and end of the entire duration of the
audio [2]. Because of the low Detection Tolerance criterion (DTC)
[3], this method can greatly improve the PSDS2 scores. Specifi-
cally, the duration length of audio is 10 seconds and the parameter
of Detection Tolerance criterion is 0.1, which means that as long as
the ground true length of event is longer than 1 seconds, the system
will regard it as true positive. From the Table 1, we can see that the
mean duration length of all events except Dishes is longer than 1
seconds. In reality, there are commonly multiple Dishes events in a
clip. If the sum of their duration length is more than 1 seconds, all
the Dishes in the clip will be considered as True Positive. Thus the
weak prediction can work well in improving PSDS2.

During training stage, we don’t use the strongly labeled data.
Instead, all the strongly labeled datasets are relabeled weakly in-
cluding systhetic set and audioset strong set. The loss is calculated
as the sum of supervised weak loss and self-supervised weak loss.
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The validation metric is defined as F1 score for weak labels. In fact,
this method is similar to the audio tagging task. The difference is
that we need to set the timestamp equal to the entire duration of clips
during inferring stage. In the aspect of model, we adopt the CRNN
[4] and pretrained PANNs [5]. Compared to the baseline, we use
the output of first fully connected layer as global embedding. Then
we fuse the embedding with the output of rnn layer of CRNN. It’s
worth noting that the parameters in PANNs are not freezed and we
train the model end to end.

1.3. Pretrained Models

For PSDS1, we apply the pretrained neural networks including
PANNs and SSAST [6] in our systems to improve the generaliza-
tion and robustness of our models. These pretrained models trained
on large-scale datasets such as audioset can effectively alleviate the
problems of lack of real training data. We fuse multiple pretrained
models to make full use of the information of external data, which
significantly improve the performance of our systems.

In particular, the CNN channels are increased form {16, 32, 64,
128, 128, 128, 128} to {32, 64, 128, 256, 256, 256, 256} while
the number of RNN cells is increased from 128 to 256. The con-
text gating is used as activation function. And the attention pool-
ing layer is set to time-dimension for aggregating the detection
output into audio tagging output. Moreover, we adopt pretrained
CNN 16k from PANNs. The output of third cnn layer is extracted
as frame-embedding. The self-supervised audio spectrogram trans-
former(SSAST) is also used as another frame-embedding. Then the
frame-embeddings are fed into two different RNNs. The outputs are
fused with CRNN. The parameters in PANNs and SSAST are not
freezed as well.

1.4. Data augmentation and Post-processing

In our system, we utilize various data augmentation techniques in-
cluding specaugment [7], mixup [8], frame shift, , FilterAug [2] and
add background noise to expand provided data. For specaugment,
we apply frequency masking and time masking. The mixup and
frame shift strategies is used to enhance the generalization ability.
FilterAugment is proposed to consider various acoustic conditions
and simulate them. It splits the whole frequency range into several
frequency bands and multiplies random factors to these bands. The
background noise includes Gaussian white noise, pure music and
other free sounds.

Because each event class differs in duration length, we use
the class-wise median filter. For each sound event, we search for
the optimal median filter length. In addition, we find that some
event classes are similar in spectrum and easily confused including
Blender and Vacuum Cleaner, Frying and Running water. There-
fore, we train a new model to classify these classes and set thresh-
olds based on their occurrence frequency.

2. EXPERIMENTS

2.1. Feature Extraction

In our system, we use the same log-mel spectrograms as baseline.
The spectrograms are extracted on 16 kHz audio with 128 mel fre-
quency bins, 2048 window length and 256 hop length. As a result,
each 10-second audio clip is transformed into a 2D time-frequency
representation with a size of (626×128).

2.2. Experimental results

First, we evaluate the data augmentation and post-processing in base
system [9] . Our base system consists of CRNN network only and is
not using external data for training. The result is shown in Table 2.
It can be observed that data augmentation and post-processing can
effectively promote the performance with PSDS1 increasing from
0.405 to 0.431 and PSDS2 increasing form 0.611 to 0.645.

Table 2: Results of Data Augmentation and Post-processing

Model PSDS1 PSDS2

Base 0.399 0.601
Base+data augmentation 0.418 0.626
Base+post-processing 0.408 0.617
Base+data augmentation+post-processing 0.423 0.632

Then we evaluate the performance for weak prediction. This
system is fusion model composed of a CRNN network and a pre-
trained CNN 16k from PANNs. In order to demonstrate the supe-
riority of fusion model, we compare the single model with fusion
model based on weak prediction. The result is shown in Table 3. It
can be seen that weak prediction contributes to much higher PSDS2
from 0.601 to 0.752 despite the decrease of PSDS1. The fine-tuned
CNN 16k also achieves good results. More importantly, the fu-
sion model consisting of CRNN and CNN 16k increases PSDS2
to 0.809.

Table 3: Results of Weak Predictions
Model PSDS1 PSDS2

CRNN 0.061 0.752
CNN 16k 0.052 0.783
CRNN+CNN 16k 0.058 0.809

Moreover, we eveluate the performance of pretrained models in
increasing PSDS1. PANNs and SSAST are both fused into our sys-
tem. The result is shown in Table 4. All of the models are trained
with external dataset. PANNs and SSAST are fine-tuned with pro-
vided data. As we can see, the fused model with CNN 16k and
SSAST can effectively improve both PSDS1 and PSDS2 scores.
The fused model can achieve PSDS1 of 0.459 and PSDS2 of 0.672.

Table 4: Results of Pretrained Models
Model PSDS1 PSDS2

CRNN 0.424 0.623
CRNN+CNN 16k 0.445 0.650
CRNN+CNN 16k+SSAST 0.459 0.672

Finally, we adopt model ensemble methods to reduce model
variance and improve accuracy. The inferred prediction probabil-
ities are averaged of all the models. The ensembled results on
shown in Table 5. The base system is the CRNN trained without
external dataset. The weak prediction system aims to obtain much
higher PSDS1. The pretrained systems have better performance
with PSDS2.
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Table 5: Results of Ensembled Models
Model PSDS1 PSDS2

base 0.431 0.645
weak prediction 0.051 0.826
pretrained model1 0.475 0.688
pretrained model2 0.481 0.694

3. CONCLUSION

In this technical report, we describe our submitted systems for
dcase 2022 Challenge Task4. We mainly use weak prediction, pre-
trained models and data augmentation and post-processing to im-
prove PSDS1 and PSDS2 scores. We achieve the best PSDS1 of
of 0.481 and best PSDS2 of 0.826 on the DESED real validation
dataset.
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