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ABSTRACT

In this technical report, submitted systems for DCASE 2022 Task4
are described. Early output embeddings of CNN14 in PANNs with
a CRNN is designed to achieve a good performance on PSDS-
scenario1. The fully connected (FC) layer of CNN14 is replaced
by output 10 categories for PSDS-scenario 2. Submitted systms
achieve an overall PSDS-scores of 1.31 (0.460 for PSDS scenario 1
and 0.856 for PSDS scenario 2) on test set.

Index Terms— Sound event detection, CNN14, CRNN, pre-
trained models, CBAM-T.

1. INTRODUCTION

In DCASE 2022 Task 4, a polyphonic sound event detection (SED)
system is desired to recognize the categories and localizations of
events in an audio signal. SED in domestic environments has great
potential for surveillance[1] and healthcare monitoring[2].

Task 4 this year is more flexible compared to previous years.
It allows participants to use external datasets and pretrained mod-
els. In observation, PSDS-scores[3] in scenario 1 and scenario 2 of
Task 4 is proportional to even-based F1-score and audio tagging F1-
score[4], respectively. Therefore, a CRNN using early output em-
beddings from CNN14 is designed to have a good performance on
even-based metrics. For audio tagging metrics, the network is built
by replacing the FC layer of CNN14. At last, a model is trained
from scratch without external data and pretrained models.

For the rest of this report, in Section 2, network architectures
are described for submitted systems. In Section 3 implementation
details and experiment results are presented. In Section 4, conclu-
sions are drawn.

2. PROPOSED METHOD

In this section, network architectures of submitted systems are de-
scribed.

2.1. Residual Block with CBAM-T

CBAM-T is slightly changed from CBAM[5]. In our opinion, the
temporal dimension for time-frequency features is more like the
channel dimension in computer vision. Thus, the input features of
CBAM-T are transposed on time and channel dimension, and they
are transposed back at the output of CBAM-T. The CBAM-T is em-
bedded into a Residual Block. The architectures of CBAM-T and
Residual Block are shown in Fig. 1(a) and Fig. 1(b), respectively.
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Figure 1: Residual Block and CBAM-T

2.2. Model using early output embeddings from CNN14

The architecture of model using early output embeddings from
CNN14 is shown in Fig. 2. Part of CNN14 in PANNs[6] is used
to output pretrained embeddings as shown in Fig. 2(a). The param-
eters of model in Fig. 2(a) are fixed, but dropout is reserved during
the training stage. The rest of the model is composed by Resid-
ual Blocks in Fig. 1(a), Bi-GRUs, FC layers and linear softmax
pooling[7].

2.3. Model for weakly predictions

In order to meet the number of classes in Task 4, the FC layer in
CNN14 is replaced to output 10 categories, which is built as a weak
label model.

2.4. Model trained from scratch

A model with same network architecture in Fig. 1 is trained from
scratch without external data.

3. EXPERIMENT

In this section, the experimental details are firstly decribed. Then
experiment results are presented.
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Figure 2: Model using early output embeddings of CNN14

3.1. Dataset and experimental details

In the traning sets of Task 4, there are 10000 synthetic audio clips
with strong labels (synthetic training set), 3470 real audio clips with
strong labels (strong set), 1578 real audio clips with weak labels
(weak set) and 14412 unlabel-in-domain real audio clips (unlabel
set). Validation and test set is comprises of 2500 synthetic audio
clips (synthetic validation set) and 1168 real audio clips (test set)
. Audio clips are downsampled from 44.1kHz to 16kHz. Log-mel
spectrograms configured with 512 window size, 160 hop size and
64mel bins are used as input features.

Three systems are presented in this report,
System 1: Ensembled by 9 models with the network described in
section 2.2, and trained on strong set, weak set, unlabel set. The
models are trained for 200 epochs with Adam optimizer. The lear-
ing rate warmups from epoch 1 to 25, and keeps at 0.0008 from
epoch 26 to 200.
System 2: Ensembled by 2 models with the network described in
section 2.3, and trained on strong set, weak set. The labels of strong
set are aggregated into weak labels. The mdoels are trained for 100
epochs with Adam optimizer. And the learing rate is 0.0001.
System 3: A single model with the network described in section
2.4, and trained on synthetic set, weak set and unlabel set. The
model is trained for 200 epochs with Adam optimizer. The learing
rate warmups from epoch 1 to 25, and keeps at 0.001 from epoch 26
to 200. The output of System 3 is the product of strong predictions
and weak predictions.

Mean-teacher based semi-supervised learning methods is ap-
plied to train System 1 and 3. Furthermore, Mixup[8] and
SpecAugment[9] are applied to generalize the models. And median
filtering with 560ms duration is used as a post-processing method.

3.2. Results and discussions

The performances for submitted systems are shown in Table 1. Sys-
tem 1 has best performance on PSDS scenario 1. For PSDS scenario
1, DTC and GTC are 0.7. Thus, PSDS score on scenario 1 and
event-based F1 are approximately proportional. System 2 has best
performance on PSDS scenario 2. For PSDS scenario 2, DTC and

GTC are 0.1. If weak predictions are right and events last longer
than 1sec in 10sec audio clips, then they will be counted as true
positives. Therefore, PSDS scenario 2 is close to the audio tag-
ging task in Task4. Moreover, System 2 has the best performance
on intersection-based F1 (IB F1) and System 1 has the best perfor-
mance on event-based F1 (EB F1).

Table 1: Performances of submitted systems on real test set

System PSDS1 PSDS2 IB F1 EB F1

Baseline 0.336 0.536 64.1% 40.1%
System 1 0.460 0.768 86.7% 56.0%
System 2 0.072 0.856 90.9% 22.8%
System 3 0.360 0.674 85.6% 39.7%

The performance on test set and synthetic validation set of a
model from System 3 is compared in Table 2, which could explain
why synthetic set is not involved in the training procedure for Sys-
tem 1 and 2. Differences in the distribution of synthetic audios and
real audios may lead to poor performance on real audios.

Table 2: Performance on test set and synthetic validation set for
System 3

Training set Test set name PSDS1 PSDS2

Synthetic set,
weak set, unlabel set

Test set 0.329 0.613
Synthetic validation set 0.467 0.696

Strong set,
weak set, unlabel set

Test set 0.410 0.663
Synthetic validation set 0.328 0.496

4. CONCLUSION

In conclusion, pretrained model with more training data is helpful
in improving the performance of SED task. Moreover, using syn-
thetic audios as training data may degrade the performance of SED
systems on real audios due to the difference in data distribution be-
tween synthetic audios and real audios.
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