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ABSTRACT

This technical report describes the system submitted to the Detec-
tion and Classification of Acoustic Scenes and Events (DCASE)
2022 challenge Task 6. There are two involving subtasks: text-to-
audio retrieval and automated audio captioning. The text-to-audio
retrieval system adopts a bi-encoder architecture using pre-trained
audio and text encoders. The system is first pre-trained on Audio-
Caps and then fine-tuned on the challenge dataset Clotho. For the
audio captioning system, we first train a retrieval model on all public
captioning data and then take the audio encoder as the feature ex-
tractor. Then a standard sequence-to-sequence model is trained on
Clotho based on the pre-trained feature extractor. The captioning
model is first trained by word-level cross entropy loss and then fine-
tuned using self-critical sequence training. Our system achieves a
SPIDEr of 32.5 on captioning and an mAP of 29.9 on text-to-audio
retrieval.

Index Terms— Audio captioning, text-to-audio retrieval, con-
trastive learning, pre-training

1. INTRODUCTION

Automated audio captioning and audio-text retrieval are cross-
modal tasks involving both audio recognition and natural language
processing. Audio captioning aims to generate audio content de-
scription using free text while audio-text retrieval searches the cor-
responding audio given the text query or vice versa. They can be
helpful in applications like automatic content description and mul-
timedia search. The interaction between audio and text has attracted
much attention from researchers recently [1, 2].

Over the last few years, automated audio captioning has over-
seen rapid development thanks to its inclusion in previous DCASE
challenges, with moving progress in data, model architecture, train-
ing schemes and evaluation metrics (for a full review see [3]).
For the current audio captioning system, we employ a standard
sequence-to-sequence model, consisting of an audio encoder and
a text decoder. We take features extracted by pre-trained models
as the input to the captioning model to reduce the number of train-
able parameters. Compared with models like PANNs or AST [4],
the audio encoder trained by audio-text retrieval learns to differenti-
ate textual descriptions, which makes it better at extracting caption-
related audio features. Therefore, we take the audio encoder of the
pre-trained retrieval model as the feature extractor. Following pre-
vious works [5, 6], we further fine-tune the captioning model by

directly optimizing the evaluation metric CIDEr using self-critical
sequence training (SCST) [7].

Natural language-based audio-text retrieval is first proposed
in [8] using Mixture-of-Embedded Experts (MoEE) [9] and
Collaborative-Experts (CE) [10] frameworks. [11] compares dif-
ferent audio features and aggregation methods and finds that
PANNs [12] features with NetRVLAD [13] aggregation perform the
best. In their approaches the pre-trained audio classification model
is frozen and used as the audio feature extractor. The text feature
extractor is simply a pre-trained Word2vec. However, due to the an-
notation errors in pre-training data [14] and domain mismatch, fine-
tuning the audio and text feature extractors can be expected to boost
performance. To better leverage the pre-trained models in retrieval,
we incorporate the feature extractors into the training process. The
retrieval system utilizes a bi-encoder architecture where the input
audio and text are encoded separately. All parameters in the model
are trainable. We explore several pre-trained large models for au-
dio and text encoders, including deep convolution neural networks
(CNN) and Transformers. We use a simple linear projection layer
to map audio and text embeddings into the same embedding space
to reduce the parameter number. Different from previous works,
the whole retrieval model is trained by InfoNCE loss [15] due to
its superior performance in contrastive learning. The ensemble of
different architectures further improves the retrieval performance
significantly.

The remaining of this report is organized as follows. Section 2
describes our framework and architecture. The experimental setup
is given in Section 3. Section 4 presents the results on the public
evaluation set. Finally, conclusion is drawn in Section 5.

2. SYSTEM DESCRIPTION

2.1. Audio Captioning

The audio captioning system consists of a feature extractor Etr, an
audio encoder Enc and a text decoder Dec. The feature extractor
transforms the input audio clip A into audio feature EA. Then Enc
further extracts audio embedding E based on EA.

EA = Etr(A)

E = Enc(EA)
(1)

The Dec accepts the previous words and E as the input. A fully
connected classifier outputs the word probability based on the Dec
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Figure 1: An overview of our approach. The audio-text retrieval model is first trained on parallel audio-text data. Then the audio encoder is
used as the feature extractor (frozen) of the captioning system. “Cos sim” denotes cosine similarity.

Enc BiGRU (256)×3

Dec Transformer Transformer GRU
(256)×2 (256)×4 (512)×1

# param / M 10.4 12.5 14.6

Table 1: Architectures and parameter numbers of captioning mod-
els. The number in the brackets indicates hidden size while the
number following “×” indicates the number of layers.

output.

y = Dec(E,WE(wprevious))

o = Classifier(y)
(2)

where the word embedding layer WE maps words into the embed-
ding space.

We adopt a pre-trained Etr which will be discussed in 2.3. A
three-layer bidirectional gated recurrent unit (GRU) is taken as Enc.
We use two kinds of models as Dec, GRU with attention mechanism
and Transformer. The architectures are shown in Table 1.

The entire model except for the frozen Etr is trained with cross
entropy (XE) loss between the estimated word probability p and
ground truth word wt:

LXE = − 1

T

T∑
t=1

logp(wt) (3)

After XE training, the model is further fine-tuned using re-
inforcement learning by SCST to optimize the evaluation metric
CIDEr.

2.2. Text-to-audio Retrieval

The text-to-audio retrieval system is a bi-encoder model, consisting
of an audio encoder EncA, a text encoder EncT and a cross-modal
matching module. For an input audio-text pair (A, T ), the two en-
coders transform the audio and text into their embeddings a and t

respectively.

a = EncA(A)

t = EncT (T )
(4)

Then the matching module projects a and t into a common embed-
ding space and calculates their similarity score:

ap = ProjA(a)
tp = ProjT (t)

s =
ap · tTp

∥ap∥ · ∥tp∥

(5)

where ProjA and ProjT are projection layers. We use a single
fully-connected (FC) layer as the projection layer. Cosine sim-
ilarity is used as the similarity metric. The training loss is the
widely-adopted InfoNCE loss [15] for its effectiveness in differen-
tiating confusing samples. In a batch containing N audio-text pairs
(A1, T1), (A2, T2), . . . , (AN , TN ), the model calculates the pair-
wise audio-text similarity s(i, j). The cross entropy loss between
the similarity scores and the ground truth labels is calculated as the
contrastive training loss:

LA→T
i = − log

exp (s(i, i) /τ)∑N
j=1 exp(s (i, j) /τ)

LT→A
i = − log

exp (s(i, i) /τ)∑N
j=1 exp(s (j, i) /τ)

L =
1

N

N∑
i=1

(LA→T
i + LT→A

i )

(6)

where τ is the trainable temperature. The audio-to-text cross en-
tropy loss is included to enhance the model ability of aligning audio
and text.

In this framework, the audio encoder and the text encoder can
adopt different architectures. We explore several frequently used
audio classification and natural language understanding models, in-
cluding CNN14 and Wavegram-Logmel-CNN14 in PANNs, AST1

1To reduce the memory required for training, we use a stride of 16 for
patch splitting on both the time and frequency dimension
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EncA EncT # param / M

WLCNN14 [12] BERTBASE [16] 192
CNN14 [12] BERTMEDIUM [18] 124

CNN14 BERTBASE 192
CNN14 RoBERTaBASE [17] 207
AST [4] BERTBASE 196

Table 2: Architectures and parameter numbers of retrieval models.

for EncA, BERT [16] and RoBERTa [17] for EncT . The architec-
tures are listed in Table 2.

2.3. Pre-training

In previous works, the audio encoder or feature extractor of the cap-
tioning model are mostly pre-trained by audio event recognition. To
enable the model to better encode information for caption genera-
tion, we use audio-text matching (retrieval) task for pre-training.
The audio encoder part of the retrieval model is trained to capture
text-related feature by contrastive training. Then the audio encoder
is used as the feature extractor of the captioning model. It is frozen
during captioning training. The procedure is shown in Figure 1. We
use current public audio captioning datasets, including Clotho [19],
AudioCaps [20] and MACS [21] for pre-training.

For text-to-audio retrieval, we also pre-train the model first.
However, we find that the model pre-trained on the mixture of all
captioning data does not perform as well as that pre-trained on Au-
dioCaps only. Therefore, we pre-train the retrieval model on Au-
dioCaps and then fine-tune it on Clotho.

3. EXPERIMENT

Data For both subtasks, Clotho v2.1 is used as the dataset, with
3839, 1045 and 1045 audio clips in the training, validation and test
sets. We merge the original training and validation sets. Then the
merged development set is split into new training and validation
subsets in a 9 : 1 ratio. The re-splitting is used to get more data for
training.

Text-to-audio Retrieval In both pre-training and fine-tuning, the
retrieval model is trained for 20 epochs with a batch size of 128. The
audio encoder and text encoder parameters are all initialized with
pre-trained ones so a smaller learning rate is used. We use the Adam
optimizer The learning rate linearly warms up in the first epoch and
then decayed by a cosine scheduler. The maximum learning rate
during pre-training is 1×10−4 while during fine-tuning is 2×10−5.

After training the model with different audio encoder and text
encoder architectures, we ensemble these models for better perfor-
mance. The ensemble setup of four submissions is given below:

• system 1: Ensemble of all five models.
• system 2: Ensemble of the first four models.
• system 3: Ensemble of the first, third and fourth model.
• system 4: Ensemble of the first three models.

Audio Captioning We first train an audio-text retrieval model on
the mixture of public audio captioning datasets (Clotho, AudioCaps,

MACS) with the same configuration as the pre-training stage men-
tioned above. Then the audio encoder of the retrieval model is taken
as the feature extractor of the captioning model.

The whole captioning model except the feature extractor is
trained for 25 epochs with a batch size of 64 using the Adam opti-
mizer. Label smoothing (α = 0.1) is used to prevent over-fitting.
The learning rate increases linearly to 5×10−4 in first 3000 warm-
up iterations, and then decays exponentially to 5×10−7 at the end of
training. Schedule sampling is used with the probability of teacher
forcing decreasing linearly from 1 to 0.7. After XE training, the
model is fine-tuned by SCST for 100 epochs with a learning rate of
5 × 10−5. During inference, beam search with a size of 3 is used.
Different models are ensembled to further enhance the performance.
Here are our submission setups:

• system 1: SCST fine-tuned model using Transformer decoder
(two layers).

• system 2: Ensemble of two system 1.
• system 3: Ensemble of system 2 and two SCST fine-tuned

models using Transformer decoder (four layers).
• system 4: Ensemble of system 3 and two SCST fine-tuned

models using attentional GRU decoder.

4. RESULTS

4.1. Audio captioning

The performance of our audio captioning systems is presented in
Table 3. Whether XE loss training or SCST fine-tuning, the 2 layers
Transformer text decoder model shows weak advantages over the
4 layers Transformer text decoder model and GRU based decoder
model. SCST fine-tuning enhances the performance in all models,
especially in ROUGEL and objective metrics CIDEr, which brings
the highest SPIDEr score 31.5 of a single model. Ensemble inte-
grates outputs from multiple models. The highest SPIDEr (32.5) is
achieved by the ensemble of two models using Transformer decoder
initialized with different random seeds. The ensemble of different
architectures (Transformer + GRU) achieve similar results with that
from the same architectures.

4.2. Text-to-audio Retrieval

The text-to-audio retrieval performance is shown in Table 4.
Wavegram-Logmel-CNN14 takes both the raw waveform and log-
mel spectrogram into audio encoding and presents better perfor-
mance than CNN14 and AST. AST encoder performs the worst,
possible due to the mismatch in data pre-processing (we use larger
patch splitting strides than that used during pre-training on Au-
dioSet). With the same audio encoder, different text encoders
achieve similar performance while RoBERTa performs slightly bet-
ter than the original BERT. Although models with different archi-
tectures achieve similar results, the ensemble of them improves the
retrieval performance significantly. We also ensemble results from
five WLCNN14-BERTB models, which are initialized from differ-
ent random seeds. However, it only achieves an mAP@10 of 25.9.
Compared with audio captioning, the ensemble of different archi-
tectures is much more effective than the ensemble of the same ar-
chitecture.
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B@4 R M C S SD B@4 R M C S SD

Decoder XE training CIDEr-D Optimization

one-layer GRU (Attention) 16.4 38.6 18.1 42.1 12.6 27.4 17.2 40.9 18.1 48.7 12.1 30.4
two-layer Transformer 16.6 37.8 17.9 42.1 12.7 27.4 18.2 41.2 18.6 50.9 12.0 31.5
four-layer Transformer 16.0 37.9 18.1 41.1 12.5 26.8 17.4 41.3 18.0 50.0 12.2 31.1

System Ensemble

two-layer Transformer × 2 17.4 38.5 18.3 43.2 13.0 28.1 18.7 41.3 18.8 52.4 12.6 32.5
↘ +four-layer Transformer × 2 17.6 39.0 18.4 43.8 13.1 28.5 18.3 41.5 18.6 51.3 12.6 32.0

↘ +GRU × 2 17.4 39.4 18.5 43.9 13.2 28.5 18.3 41.5 18.6 51.3 12.6 32.0

Table 3: The performance of systems with different text decoders and ensemble strategies. In ensemble strategy, “×2” indicates that two
different random seeds are used and then ensembled. “↘ +” denote that the system in the above line is ensembled with the following system
together. B@4, R, M, C, S and SD denote BLEU4, ROUGEL, METEOR, CIDEr, SPICE and SPIDEr, respectively.

EncA EncT R@1 R@5 R@10 mAP@10

WLCNN14 BERTB 15.4 38.9 53.0 25.6
CNN14 BERTM 15.0 38.2 52.0 25.1
CNN14 BERTB 14.9 38.1 52.3 24.9
CNN14 RoBERTaB 16.2 38.3 52.0 25.8

AST BERTB 14.6 37.6 50.2 24.4

Ensemble 18.8 44.7 58.7 29.9

Table 4: The performance of systems with different audio encoder
and text encoder architectures on Clotho evaluation set. “WL-
CNN14” denotes Wavegram-Logmel-CNN14 and the subscript
“M” and “B” denote MEDIUM and BASE respectively.

5. CONCLUSION

In this report, we comprehensively described our system for
DCASE2020 challenge Task 6. For text-to-audio retrieval, we train
a bi-encoder model with pre-trained audio and text encoders using
InfoNCE loss. The model is first pre-trained on AudioCaps and
then fine-tuned on Clotho. For audio captioning, we take the audio
encoder of the pre-trained retrieval model as the feature extractor
and train a sequence-to-sequence model. The captioning model is
further fine-tuned by SCST. Ensemble of several models improve
the performance of both captioning and retrieval significantly.
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