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ABSTRACT

In this technical report, we present our submitted system for
DCASE2022 Task4: Sound Event Detection in Domestic Environ-
ments. We propose three main ways to improve the performance
of the network. First, we use the frequency dynamic convolution
(FDY) which applies kernel that adapts to frequency components of
input to improve physical inconsistency in 2D convolution on sound
event detection (SED). Then, we propose a weight raised temporal
contrastive loss based coherence learning to improve the continuity
of event prediction and the switching efficiency of event boundaries.
Third, we use pre-trained model PANNS in this task and propose
two methods to fuse the features from PANNs and our model which
improve the PSDS1 and PSDS2 score respectively. The system we
submitted is based on the mean-teacher architecture, and the PSDS1
and PSDS2 score on the development dataset can reach 0.482 and
0.835 respectively.

Index Terms— Sound event detection, Semi-supervised learn-
ing, mean-teacher, pre-trained model, frequency dynamic convolu-
tion

1. INTRODUCTION

Sound Event Detection (SED) aims to detect sound event categories
and their corresponding time of onset and offset (timestamp) in a
sound clip. In order to adapt to this task better, a large amount of
data with strong labels are required. However, since hand-labeling
these collected data is extremely costly, the data sets are difficult to
obtain. At the same time, this kind of sound should be collected
in the real environment to be applied in real life. As an alternative,
strongly labeled dataset are synthesized from foreground and back-
ground datasets. However, it is still difficult to obtain only a large
foreground dataset containing with strong labels. Therefore, lim-
ited strong labeled data is trained by combining an example amount
of weakly labeled data whose labels only include the sound event
types without timestamps of the events and unlabeled dataset whose
label has no information at all.

The DCASE 2022 Task 4 is the follow-up to DCASE 2021 Task
4. The task evaluates systems for the detection of sound events us-
ing weakly labeled data (without timestamps). The target of the
systems is to provide not only the event class but also the event
time localization given that multiple events can be present in an au-
dio recording. Compared to DCASE 2021 Task 4, this year’s data
sets are the same as last year, while there is no source separation

pre-processing. Besides, this year’s task adds extra data resources
including pre-trained models and allowed datasets. We find that the
results of some of top-ranked models in the DCASE Challenge 2021
Task 4, were based on a mean-teacher model [1] trained mainly by
both weakly labeled and unlabeled data with consistency regular-
ization.

In this report, we propose an SED model based on mean-teacher
model and then train it using all the training data, including strongly
labeled, weakly labeled and unlabeled data. Next, the trained model
is used to test the performance in the evaluation set. In order to
better complete the task, we consider three different methods: 1)
the frequency dynamic convolution (FDY) [2], 2) a new weight
raised temporal contrastive loss function that acts as label, and 3)
pre-trained models to obtain embedding features using PANNs [3].

2. PROPOSED METHODS

2.1. Network architecture with FDY convolution

Nam et al. demonstrated that the frequency domain energy distri-
bution is different for different events in the SED task. The convo-
lution neural network(CNN) commonly used in deep learning has
translation invariant properties. Translation invariance means that
the system will produce exactly the same response regardless of
how its input is translated. In the field of computer version, the
translation invariance of convolution means that objects appearing
in the image can be correctly detected after translated to any po-
sition. But for SED, this property may misjudge two events with
similar energy but different distributions, thus reducing the overall
performance of the SED task. This means that simply increasing
depth or width of CNN architecture cannot improve the detection
ability.

Dynamic convolution enhances representation capability of
CNN architecture by applying input-adaptive kernel on convolution
layer. By extracting attention weights for the weighted sum of basis
kernels, dynamic convolution generates appropriate kernel for given
input. This means dynamic convolution can overcome the transla-
tion invariance of convolution. Here, we use the FDY convolution
proposed by Nam et al. in [2] to replace the 2D Conv. in the base-
line and we set the same hyperparameter for each FDY convolution
block as in [2].

For CNN part, the first block is constructed by a 2D CNN block,
then followed by 6 FDY convolution blocks. Each FDY block con-
tains a FDY convolution layer, a BatchNorm layer and an activate
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function. The number of filters for 6 FDY convolution blocks are
[64, 128, 256, 256, 256, 256] respectively, and frequency pooling
rate for each stage is set to 2, whereas the total temporal pooling
rate is set to 4.

2.2. Network architecture with PANNs

Despite the attention pald to competitions such as DACSE, how
well pre-trained audio pattern recognition systems perform on
large-scale datasets is still an open question. PANNs is a pre-trained
model for audio tagging trained on Audioset, and Kong proposed a
Wavegram-Logmel-CNN system which achieves audio set tagging
with mean precision (mAP) of 0.439 [3]. It is worth noting that al-
though PANNs is trained on weakly labeled data, it can still show
excellent performance when transferred to other strongly labeled
tasks. Based on the above reasons, we fuse the CRNN network with
the PANNs network and propose two fusion schemes to improve the
scores of PSDS1 and PSDS2.

Here we use the embedding features (2048 dims) and the pre-
diction framewise features (527 dims) output by PANNs to assist
the SED task. First, considering that the prediction framewise fea-
tures output by PANNs after transfering to SED task have temporal
characteristics, we weighted add the output results of PANNs and
the output of GRU respectively after feature dimensionality reduc-
tion.The pre-training features and the features extracted by CRNN
are reduced to 10 dimensions, and the fused features are used as
input to the classifier and the probability of each category on each
frame is calculated. Second, we concatenate the embedding features
of PANNs and the output of GRU in the feature dimension and send
the concatenated features to the classifier for prediction. Before the
fusion of these two methods, the frame length of the pre-trained
features and GRU output features must be unified.

The first fusion method improves the frame-level accuracy ac-
cording to the mutual constraints of the two features on the same
frame, and the second fusion method improves the accuracy of cat-
egory prediction by providing high-dimension features. In our sub-
mitted 4 systems, each system use at most one fusion method.

2.3. Weight raised temporal contrastive loss

In today’s SED tasks, the loss functions of most models tend to
use BCE and MSE. It is true that they are effective methods to im-
prove the convergence of the model to make the label predicted by
the model completely approach the real label, but the model cannot
learn the independent and effective information of each event very
well in this process.

BCE and MSE loss function effectively ignores the particular
relevance of instances near event boundaries which are expected
to facilitate boundary detection; while instances within events are
expected to reflect more stationary or coherent behavior in feature
representation [4]. Thus, Kothinti et al. proposed a loss function
applied between the ground truth and the output of convolutional
layer in CRNN to improve event boundary recognition[4].

However, the time information contained in the output features
of the convolutional layer in CRNN is very weak, which make it
impossible to effectively constrain the time series information, and
the randomness of the model prediction result at the beginning of
training is considered too strong. Therefore, We propose a temporal
contrastive loss wr-TCL whose weights rise with training epochs
and use this loss function to contrast the model together with BCE
and MSE.
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{
e/EPOCH, 1 ≤ e ≤ EPOCH/2

alog(e/b), EPOCH/2 < e ≤ EPOCH (3)

Formula (1), (2) and (3) describe our proposed loss function. σ
represents the weight of the loss function in different epochs, where
EPOCH represents the total number of training epochs and e rep-
resents the currently epoch. lA(x) is an indicator function and ‖·‖p
is an Lp norm. α and β are hyperparameters that control the con-
tribution of the additional loss terms, herein we set α as 0.1 and β
as 0.03. z and y represent the soft predicted result of the model
and the ground truth respectivly. In (3), the specific values of a
and b should be obtained according to the boundary conditions: σ
should be equal to the limit and slope on the left and right sides at
EPOCH/2.

In this way, the following two effects can be achieved: 1. Re-
ward the fact that the fast reaction at the event boundary; 2. Penalize
the fact that the event should be continuously predicted but not con-
tinuous. So that the model constrains the prediction results within
the event and the event boundary respectively. Consider that the
output of the model is unstable at the beginning of training, and the
prediction continuity of the model in events is poor, it may cause a
numerical imbalance in the penalty term of wr-TCL, resulting in a
serious decline in the overall network training performance. There-
fore, we increase the weight σ, so that the weight of wr-TCL tends
to 0 at the beginning of training, and increases with epochs and
eventually plateaus.

3. EXPERIMENT

3.1. Dataset and feature extraction

All experiments are conducted on the DCASE 2021 domestic en-
vironment sound event detection (DESED) dataset, which is com-
posed of real soundscapes and synthesized soundscapes. For
real soundscapes, data can be divided into 6 subsets: weakly la-
beled (1578 clips), unlabeled in domain (14412 clips), synthetic
dataset(10000 clips), validation(1168 clips) and evaluation. A
strongly labeled dataset from Audioset(3471 clips) is also used for
training in the three systems we submitted. The input features used
in the proposed system are log-mel pectrograms, which are ex-
tracted from the audio signal resampled to 16000 Hz. The log-mel
spectrogram is extracted using 2048 STFT windows with a hop size
of 256 and 128 Mel-scale filters. As a result, each 10-second sound
clip is transformed into a 2D time-frequency representation with a
size of (625×128).
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Table 1: Final results of models on validation dataset
Model No. Pre-trained model Extra dataset Details PSDS1 PSDS2

Baseline
1.yes
2.yes
3.no

1.no
2.no
3.yes

0.336
0.351
0.313

0.536
0.552
0.722

Model1 yes yes

+ FDY CRNN
+ PANNs predicted framewise feature
+ wr-TCL
+ ensemble top5 model

0.481 0.710

Model2 yes yes

+ FDY CRNN
+ PANNs predicted framewise feature
+ wr-TCL
+ ensemble top10 model

0.485 0.725

Model3 yes yes

+ FDY CRNN
+ PANNs embedding feature
+ weak train
+ ensemble top5 model

0.065 0.835

Model4 no no + FDY CRNN
+ weak train 0.058 0.813

3.2. Experimental settings

The neural networks are trained using the Adam optimizer, with a
maximum learning rate of 0.001, and a learning rate rampup during
the first 50 epochs. Each model is trained for a total of 200 epochs.
In our experiments, we save the best models for PSDS1 and PSDS2
separately, which can be further used for model ensembling. To
improve the PSDS2 score, we use the weak train in model3 and
model4 [5]. The network archieture of pre-trained model PANNs
that we use is ”Cnn14 DecisionLevelMax”[3].

To improve the generalization ability of the model, we perform
data augmentation on each model. A total of four data augmen-
tation methods are used: Mixup, Filteraugment, Frame-shift and
Specaugment.

3.3. Results

The results for the submitted models on the DESED Real Validation
dataset is shown in Table 1. Among the four systems we submit,
model 1-3 use the pre-trained model and external data, and model 4
does not use. Model1 and 2 are mainly used to upgrade the PSDS1
score, predicted framewise feature of the PANNs is fused with the
feature of FDY-CRNN, and wr-TCL together with MSE and BCE
loss constrains the optimization direction of the model. The top 5
models in training are ensembled as model1, and the top 10 models
are ensembled as model2. Model 3 concatenat the PANNs embed-
ding features and FDY-CRNN features by weak train to obtain the
higher PSDS2 score. Model4 does not use pre-trained model and
external data according to the competition requirements, so we only
weak trains the FDY-CRNN. In this way, among the four systems
we submitted, the highest PSDS1 reached 0.485, and the highest
PSDS2 reached 0.835, which is much higher than the three base-
lines.
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