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ABSTRACT

This report presents the system and results of a submission to
Task 5 (Few-shot Bioacoustics Event Detection) of the Detection
and Classification of Acoustic Scenes and Events Challenge 2022
(DCASE2022). This task focuses on sound event detection in a
few-shot learning setting for animal (mammal and bird) vocalisa-
tions. To address this problem, we propose a deep-learning-based
system for similarity estimation between two given audio samples.
The presented approach is based on a siamese network with two
identical convolutional feature extractors and one mutual fully con-
nected head, which is responsible for similarity modeling. Due to
the fact that sounds occurring in nature can vary significantly in du-
ration, the proposed system consists of three separate models, each
responsible for detecting events of a different length. We achieve an
F-measure score of 67.3 % on DCASE2022 Task 5 validation set,
compared to 29.6 % scored by the best baseline system.

Index Terms— sound event detection, few-shot learning,
siamese network, deep learning

1. INTRODUCTION

This paper presents the most important technical details of the so-
lutions submitted for DCASE 2022 Task 5: Few-shot Bioacoustic
Event Detection [1]. A few-shot learning [2, 3, 4] system must be
able to make predictions based only on a few instances of the target
class. The main purpose of this challenge is to find reliable algo-
rithms that are capable of dealing with data sparsity, class imbal-
ance and noisy environments. Sound events occurring in nature can
vary significantly, especially in terms of their duration. Preparing
one model or system that is able to detect both long (over 1 s) and
short (under 100 ms) sound events can be challenging. To address
this problem, in each of the prepared submissions we use three mod-
els responsible for the detection of events of various lengths. The
models’ architecture is based on a siamese network [5], with two
identical convolutional feature extractors and one mutual fully con-
nected head. Each model can be treated as a classifier whose task is
to determine whether two input samples belong to the same class.

2. DATASETS AND PREPROCESSING

2.1. Dataset

During preparation of the presented solution, only the DCASE2022
Task 5 development dataset was used. It consists of training (con-
taining 21 hours of audio recordings) and validation (containing al-

most 6 hours of audio recordings) splits. The sampling rate of audio
samples ranges between 6 kHz and 48 kHz.

2.2. Preprocessing

Initially, all recordings were upsampled to 48 kHz, due to the input
requirements of the pre-trained OpenL3 network [6]. All positive
examples from the training split were cut out from recordings based
on the provided onset and offset times. Additionally, parts of the
audio samples that did not contain any of the target classes were cut
out and labeled as negative examples.

As mentioned in section 1, each of the prepared solutions con-
sists of three models designed for detecting sound events of differ-
ent lengths. The preprocessing phase for each case is explained in
subsections 2.2.1 and 2.2.2.

2.2.1. Models for short and medium sound events

During training and inference of models intended for the detection
of short (under 100 ms) and medium-length (between 100 ms and 1
s) sound events, each audio sample was transformed to a mel spec-
trogram. In both cases, training was performed on 200 ms segments.
Table 1 presents parameters used to generate the mel spectrograms.

Additionally, during the fine-tuning and inference phases (de-
scribed in detail in sec. 3.2 and 3.3), the input segment length has
been reduced to 100 ms and STFT hop size to 64. It made short
sound events more significant on the generated spectrogram with-
out changing the size of the input tensor.

2.2.2. Model for long events

Due to the fact, that for detection of long events we use a pre-trained
OpenL3 network as the convolutional feature extractor (the whole
architecture of the solution is described in detail in sec. 3.1), we do
not have to compute the mel spectrogram as it is an internal part of
the used implementation. The only preprocessing step that has to be
done in this case is trimming input audio samples into 1 s segments.

Table 1: Mel spectrogram parameters.

Model mels | hopsize | n_fft | fiin (Hz] | fimae [Hz]
short 128 128 1024 | O 16000
medium | 128 128 4096 | O 16000
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Figure 1: Model architecture.

2.3. Augmentation

During training, two methods of online data augmentations were
used. Initially, the input data was randomly cropped to the appro-
priate length. In the following step, the input samples were mixed
with artificial noise generated based on the algorithm presented in
[7]. We used the implementation from [8] with the sigma parame-
ter set to 2. After the mixing procedure we obtain samples of the
same RMS energy as the input, while maintaining the appropriate
signal-to-noise energy ratio. Other methods of data augmentation,
including SpecAugment [9], were also tested, but they did not im-
prove the quality of the model.

3. PROPOSED METHOD

3.1. Model architectures

The main goal of the proposed neural networks is to estimate the
similarity between two input samples. For this purpose, we design a
siamese network consisting of a convolutional feature extractor and
a fully connected head. Figure 1 shows an overview of the proposed
architecture. Details of the depicted components are described in
sections 3.1.1 and 3.1.2.

3.1.1. Feature extraction

The first stage of each model consists of a feature extraction mod-
ule that produces embedding vectors for the input audio samples.
For the short and medium event models we train a custom convolu-
tional neural network based on VGG-16 [10] from scratch (Table 2),
whereas for the long event model we opt for the pre-trained OpenL.3
network (Table 3).

In all proposed models, two preprocessed samples are delivered
to the input. During forward propagation, the embedding vectors
are determined for each of the samples separately using exactly the
same feature extractor (shared weights). Finally, the element-wise

Table 2: Architecture of model prepared for short and medium
events detection.

Layer type Number of output features
ConvBlock* 64

ConvBlock* 128

ConvBlock** 256

ConvBlock** 512

ConvBlock** 512

Flatten 256

Fully connected + ReLU | 256

ConvBlock* - 2 x (Conv2D + ReL.U)
ConvBlock** - 3 x (Conv2D + ReL.U)

Table 3: Architecture of model prepared for long events detection.

Layer type Number of output features
CustomMelSTFT -

ConvBlock**# 64

ConvBlock**# 128

ConvBlock**# 256

ConvBlock**# 512

Flatten 256

Fully connected + ReLU | 256

ConvBlock*** - 2 x (BatchNorm + Conv2D) + ReLU
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Table 4: Fully connected classifier architecture.

Layers type short | medium | long
Linear + ReLU 2048 | 2048 256
Linear + ReLU 2048 | 2048 256
Linear + Sigmoid | 1 1 1

absolute difference between these vectors is calculated and fed to
the next stage of the system.

3.1.2. Fully connected head

The second part of each of the proposed models is the fully con-
nected network, which is responsible for estimating the similarity
between the input samples. Table 4 lists the sequence of the used
layers.

3.2. Training

During the training phase, the models were treated as classifiers,
whose task is to assess whether the two input samples belong to
the same class. For this purpose, a binary cross-entropy loss was
used. Adam with the initial learning rate set to 0.0001 was selected
as the training optimizer. In addition, learning rate was scheduled
to be multiplied by 0.99 every other epoch. All prepared models
were trained for 300 epochs, however the model with the lowest
validation loss was considered the best. In order to avoid overfitting
to the training split, data augmentation methods described in para-
graph 2.3 were used. Each training batch consisted of 40 % positive
(both samples belonged to the same class) and 60 % negative pairs,
which included samples containing sounds generated by two differ-
ent species of animals, as well as animal-background pairs.

For each evaluation file (each new class), additional fine-tuning
was performed independently. During this process we used the
same loss function, optimizer and learning rate scheduler as for the
main training phase. The main difference was creating positive pairs
using only five examples of a given class. Each batch consisted of
80 % negative pairs. The entire fine-tuning took 100 steps and the
last weights were used in evaluation.

3.3. Inference and post-processing

The aim of the inference process is to determine the average simi-
larity score of the tested samples to each of the five labeled target
events. In the case of detection of long and medium-length events,
we elected to use a sliding window with a step of 100 ms. For short
events, during inference, we decided to stretch the mel spectrogram
by shortening the input segment length from 200 ms to 100 ms and
reduce the STFT hop_size value by 50 %. In addition, the sliding
window step was set to 10 ms.

In most of the prepared models, we used output score thresh-
olding for determining onsets and offsets of events. The thresholds
differ depending on the model and have been set based on the vali-
dation split. In addition, gaussian filtering with sigma parameter set
to 9 was used to smooth out the predictions for the model designed
to detect long audio events.

In the case of the model dedicated to the detection of
short audio events, which was used in submission ZGORZYN-
SKI_SRPOL _task5_1, the post-processing module differs signifi-
cantly. It uses a median filter to smooth out the predictions and
peak picking for event onset and offset estimation.
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Table 5: F-score values on validation split (in %).

Submission name Overall | HB PB ME

ZGORZYNSKI_SRPOL _task5_1 | 67.3 913 | 444 | 90.0
ZGORZYNSKI_SRPOL _task52 | 59.4 913 | 35.1 | 90.0
ZGORZYNSKI_SRPOL _task5.3 | 60.0 91.7 | 352 | 935
ZGORZYNSKI_SRPOL _task5.4 | 57.2 89.0 | 32.5 | 96.1

4. RESULTS

We selected four systems for the DCASE2022 Task 5 final eval-
uation. Submissions ZGORZYNSKI_SRPOL _task5_2, ZGORZYN-
SKI_SRPOL _task5_3 and ZGORZYNSKI_SRPOL task5 4 differ
from each other by random selection of the validation set from the
provided training split. DCASE 2022 Task 5 validation split was
used only for selection of the best models. In case of submis-
sion ZGORZYNSKI_SRPOL _task5_1, a modified post-proccessing
method was used, as described in section 3.3. Table 5 presents the
per-dataset and overall F-score values for the DCASE 2022 Task 5
validation split.

5. CONCLUSIONS

In this technical report, we presented systems and achieved results
of the submissions to Task 5 of the DCASE2022. Prepared archi-
tecture was based on siamese network with fully connected head,
which is responisble for similarity modeling. Each of the pre-
pared solutions consists of three deep learning models used to detect
sound events of various lengths. A fine-tuning phase, was used to
increase the accuracy of the models on target sound events, based
only on 5 samples of each class. Additionaly, post-processing meth-
ods had a significant impact on the F-measure calculated on the val-
idation split.

Finally, we achieve an F-measure score of 67.3 % on
DCASE?2022 Task 5 validation set, compared to 29.6 % scored by
the best baseline system. These results indicate that siamese net-
works are a promising approach to audio few-shot learning tasks.
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