
Detection and Classification of Acoustic Scenes and Events 2022 Challenge

A META-LEARNING FRAMEWORK FOR FEW-SHOT SOUND EVENT DETECTION
Technical Report

Tianyang Zhang∗

Chongqing University
Key Laboratory of Optoelectronic Technology

and Systems, MOE
Shapinba, Chongqing University

zhangty@cqu.edu.cn

Yuyang Wang, Ying Wang

Chongqing University
Key Laboratory of Optoelectronic Technology

and Systems, MOE
Shapinba, Chongqing University

WangYuyang@cqu.edu.cn
2027212542@qq.com

ABSTRACT

The report presents our submission to Detection and Classification
of Acoustic Scenes and Events challenges 2022 (DCASE2022) task
5. This task focuses on sound event detection in a few-shot learn-
ing setting for animal (mammal and bird) vocalisations. Main is-
sue of this task is that only five exemplar vocalisations (shots) of
mammals or birds are available. In this paper, we propose a meta-
learning framework for few-shot bioacoustic event detection chal-
lenge. Maximizing inter-class distance and minimizing intra-class
distance (MIMI) are used as a criteria to fine-tune embedded net-
work for few-shot tasks. Experimental results indicate our frame-
work get better performance than baseline, and F1 score is about
46.51% on evaluation set.

Index Terms— Few-shot, Inter-class and intra-class, Sound
event detection

1. INTRODUCTION

Simulating human auditory perception and creating general-
purpose systems to detect interesting sound sources is called au-
tomatic sound event detection (SED). The goal of automatic SED is
to identify sound events classes and detect the onsets and offsets of
these events. Automatic SED has extensive application prospects in
various fields, including noise monitoring [1], multimedia indexing
[2] and audio surveillance [3].

In many practical situations, there exists large variety of au-
dio events and labels available for rare events are prohibitively
small. These situations focus on sound event detection in a few-
shot learning setting, which is known as few-shot sound event de-
tection. Meta-learning [4, 5, 6] is a key method to solve few-
shot sound event detection. Shi [7] compares traditional supervised
methods and a variety of meta-learning approaches applying in few-
shot SED. Their experimental results show meta-learning models
achieve superior performance. Yang [8] proposes a method, com-
bined meta-learning with transductive inference, for few-shot SED.
The core idea of their method is about leveraging the statistics of
unlabeled data. Wang [9] successfully adapts metric-based meta-
learning approaches to an open-set few-shot SED problem.

In this technical report, we propose a meta-learning framework
for few-shot bioacoustic event detection, which inherits prototyp-
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ical network [10]. Maximizing inter-class distance and minimiz-
ing intra-class distance (MIMI) are used to fine-tune embedded net-
work. In addition, We set a distance constraint on intra-class dis-
tance to avoid overfitting of embedded network.

2. PROPOSED METHOD

We design maximizing inter-class distance and minimizing intra-
class distance (MIMI), which makes embedded network can learn
more discrimination embedding features for specific few-shot sound
event detection task. The process of MIMI is illustrated in Figure 1.
MIMI utilizes support set to fine-tune fϕ. a specific few-shot SED
task is given two subsets Sc and Sc′ . dist(Sc) denotes intra-class
distance and dist(Sc, Sc′) denotes inter-class distance.

After obtaining a fine-tuned embedded network for specific
few-shot SED task, new class prototypes of support set can be re-
calculated. Then, prediction results for query sound samples are
output based on euclidean distance. In addition, the specific few-
shot SED task only have a few labeled sound samples in support
set. If intra-class distance of support set is not controlled during
fine-tuning process, it is easy to cause overfitting. We considerthat
when the intra-class distance of bioacoustic events and background
sounds are over-compressed, embedded network no longer learn
useful information for specific few-shot SED task. Therefore, we
constrain intra-class distance to avoid overfitting the support set.
hen average intra-class distance is less than a distance constraint,
fine-tuning process is terminated. Namely, dist(Sc)+dist(Sc′ )

K×(K−1)
< η,

where η is the distance constraint and K is the number of audio
samples per class. In this report, we set K as 5.

Figure 1: The overview of MIMI.
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3. EXPERIMENTS

3.1. Experimental Setups

Dataset. The dataset is from DCASE2022 task 5 development and
evaluation sets [11].
Metrics. For all experiments, we use event-based F-measure (F1
score) [12] as evaluation metric, which is the most commonly used
metrics in sound event detection.
Preprocessing. We sample all audio clips(recordings) with 22.05
kHz sampling rate and apply Short Time Fourier Transform (STFT)
with a window size of 1024 and a hope size of 256 to extract spec-
trograms. Then, Per-channel energy normalization (PCEN) is used
in spectrograms to improve the robustness to channel distortion.
Next 128 Mel filter banks are applied on the spectrograms to ob-
tain Mel spectrograms. The audio frames are normalized on the
training set with zero mean and unit variance distribution.
Model. we submit four model with different distance constraint and
learning rate (lr) during fine-tuning process. Detail setting as shown
in Table 1.

Table 1: Detail setting of distance constraint (η) and learning rate
(lr) during fine-tuning

Model η lr

Model 1 0.30 5× 10−3

Model 2 0.30 1× 10−2

Model 3 0.45 5× 10−3

Model 4 0.45 1× 10−2

3.2. Experimental Results

Table 2 shows the experimental results of four models on validation
set, which indicate our proposed framework is very useful. Model 1
achieves 46.51% F1 score, which is significantly outperforms Base-
line. The performance of different distance constraint and learn-
ing rate are different, which demonstrates the necessity for setting
thresholds.

Table 2: The 5-shot sound event detection performance on valida-
tion set.

Mode Precision(%) Recall(%) F1(%)

Baseline 36.34 24.96 29.59
Model 1 53.02 41.42 46.51
Model 2 54.75 38.99 45.55
Model 3 45.33 43.21 44.25
Model 4 46.58 41.99 44.17

4. CONCLUSIONS

In this report, we propose a meta-learning framework for few-shot
sound event detection. Targeting the limitations of specific few-
shot sound event detection tasks, we introduce MIMI optimization
criteria to continuously fine-tune embedded network. MIMI makes
embedded network learn more discriminative embedding features
for unseen classes. Such embedding features contribute to classify
new sound events. In addition, a distance constraint is designed

to constrain fine-tuning process, which aims to avoid overfitting of
embedded network.
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