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ABSTRACT

The majority of approaches to machine condition monitoring via
anomalous sound detection are based on supervised learning. The
metadata of the datasets is used as data labels for training super-
vised models. However, data labeling is expensive and often im-
possible for industries with significant amount of equipment. In
this case self-supervised methods could solve the problem since
they do not require labeled data. In this work we applied the recent
self-supervised approach to compute embeddings of audio signals
named BYOL-A and classical machine learning method Local Out-
lier Factor (LOF) to compute outlier scores for anomalous sounds.
The main focus of this work is to not use any labels from the meta-
data of the datasets and explore a self-supervised learning approach.

Index Terms— Self-supervised learning, anomaly detection

1. INTRODUCTION

The goal of acoustic anomaly detection is to determine, analyzing
an audio recording, whether a machine recorded works in normal
regime or it is malfunctioning producing anomalous sound. The
problem of industrial machine monitoring has significant impor-
tance to the industry since it can prevent malfunctioning of expen-
sive equipment. Early detection of anomalous working regime de-
creases the time out of service and therefore decreases expenses.
There are different types of sensors that can be installed on a ma-
chine for monitoring purposes, such as vibration and acoustic mi-
crophones. There are two main advantages of using microphones as
monitoring sensors, first, they are considerably cheaper than other
types of sensors, and secondly, they can be installed noninvasively,
which makes them a universal sensor for almost any kind of indus-
trial machines.

Although the Task 2 is formulated as self-supervised learning
(SSL) [1], the majority of submissions of the previous editions used
supervised approaches. These submissions trained classifiers to pre-
dict labels from metadata of the challenge dataset, like machine
ID or working mode, and then extracted embeddings from a layer
before the classification head. In a certain sense, using metadata
can be considered as a data leak. The main problem with this ap-
proach is that labeling during data collection is required, which may
be impossible to get in a real-world industrial site scale. In real
cases, dataset can be represented by a set of unlabeled files (at best
recorded from a known machine type) of normal working condi-
tions and a significantly smaller set of anomalous working condi-

tions. Therefore, it can be impossible to train a model in a super-
vised manner using metadata.

Summing up, there is a need of a good self-supervised solution.
We focus our attention on models for self-supervised representa-
tion of speech signals. There are several successful applications of
self-supervised speech representation for Automatic Speech Recog-
nition (ASR) task, wav2vec [2] and wav2vec 2.0 [3], HuBERT [4],
TERA [5], BYOL-A [6] to name a few. The main idea is twofold.
First, we use classic self-supervised training with Contrastive Pre-
dictive Coding loss or its variants to learn hidden representation of
the speech data. Second, we use these representations as the in-
put features for the downstream task instead of classical Short-time
Fourier transform (STFT) or log-Mel filterbanks features.

2. PROBLEM STATEMENT

We formulate the problem as a self-supervised learning task. Our
model was trained on data of normal working regimes, which is mo-
tivated by two factors. First, there is a significant disproportion of
normal and anomalous training data since anomalies are rare events.
Second, the choice is motivated by the industrial needs in a solution
that can be adapted to different types of machines and their working
regimes. On a nutshell, our approach is based on

(i) training an embedding model in a self-supervised approach;
(ii) embedding normal and anomalous audios;
(iii) fitting a Local Outlier Factor model to score embeddings and

predict outliers, i.e. anomalous conditions.

2.1. Embedding Model

To compute embeddings, we looked at two SSL approaches. The
first one is based on Contrastive Predictive Coding, in which a
model is trained to learn a context of an input sequence and predict
next sample of it using the learned context. Then the context is used
as the embedding. The second one uses the idea that embeddings
of the same file with different augmentations should be close in the
embedding space. We picked the second one following the intuition
that the first one is less suitable for industrial audio domain since it
founds its success in a speech domain where the context is to vary
more comparing to industrial sounds.

We used a model called BYOL-A, which is a modification of
computer vision model BYOL [7] for audio domain, to compute
embeddings, with architecture as it was reported in the paper and
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Figure 1: Pipeline of BYOL model

the code open sourced by the authors. The input features of the
model are log-Mel spectrogram computed from the whole length
audio files with 1024 points of Fourier Transform and 64 Mel filters.
Log-mel spectrogram then goes through the augmentation block
of mixup and random crop and resize, with pre- and post- mean-
variance normalization. We used only original datasets to train the
model [8] and [9]. It is important to highlight that we did not use
any labels of the files from the datasets, because it can be consid-
ered as a data leak, and moreover such labels are not available in
real-world cases. Figure 1 overviews the model.

2.2. Anomaly scoring

To compute anomaly scores for each input file, we fitted Local Out-
lier Factor on the embeddings of the normal files from train set.
Then embeddings for the test set files were computed and scored
with the Local Outlier Factor instance.

2.3. Quality Metrics

The main quality metric used in this study is Area Under the re-
ceiver operating characteristic Curve (AUC). The formulas to com-
pute AUC and pAUC are Equation 1 and Equation 2, respectively.
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signals, respectively; Aθ(x) is a scoring function. We took p = 0.1
in our experiments.

3. RESULTS

The final results are presented in Table 1. Here we do not separate
machines by their sections since we followed fully self-supervised
logic and did not use any metadata while training. The results in
Table 2 were computed for each machine type over all its files to-
gether, without splitting by the section IDs. Table 2 presents results
for machines separately per section IDs, as it was reported on the
challenge website. In our view, Table 2 is more representative for
self-supervised problem formulation, because it is consistent with
the idea to not use the labels of the audio files.

Figure 2 shows the embeddings of two machines, gearbox
and slider, from the dataset after TSNE dimensionality reduction.
As one can see on the plot, certain sections of training data were
densely clustered.

Table 1: Resulting AUC on dev test dataset

machine gearbox valve slider fan ToyTrain ToyCar
AUC 0.57 0.50 0.65 0.54 0.60 0.54

Table 2: AUC and pAUC results by machine type and section ID

section source domain AUC target domain AUC pAUC
gearbox

section 00 0.56 0.54 0.49
section 01 0.65 0.496 0.51
section 02 0.64 0.50 0.50

harmonic mean 0.62 0.51 0.50
valve

section 00 0.60 0.64 0.55
section 01 0.49 0.50 0.49
section 02 0.50 0.30 0.50

harmonic mean 0.52 0.43 0.51
slider

section 00 0.75 0.62 0.54
section 01 0.62 0.51 0.53
section 02 0.71 0.63 0.53

harmonic mean 0.69 0.58 0.53
fan

section 00 0.56 0.48 0.49
section 01 0.52 0.59 0.53
section 02 0.51 0.62 0.49

harmonic mean 0.53 0.56 0.50
bearing

section 00 0.41 0.54 0.48
section 01 0.40 0.46 0.49
section 02 0.54 0.47 0.48

harmonic mean 0.44 0.49 0.49
ToyTrain

section 00 0.56 0.58 0.51
section 01 0.57 0.63 0.52
section 02 0.73 0.58 0.51

harmonic mean 0.61 0.60 0.51
ToyCar

section 00 0.63 0.53 0.52
section 01 0.53 0.40 0.53
section 02 0.67 0.55 0.54

harmonic mean 0.61 0.49 0.53

4. CONCLUSION

In this submission, we tested the possibility of detecting anomalous
machine conditions using fully self-supervised approach building
embeddings of audio files and then detecting outliers of these em-
beddings distribution. The model was trained with files of normal
working conditions only without any metadata labels, such as sec-
tion ID or operational settings. We believe that our results can be a
baseline for fully self-supervised approaches in further researches.
We point two possible directions for further research, the first one is
to experiment with the embedding model and outlier detector to im-
prove the results. The second is to train a universal model invariant
to a machine type, which can make an industry-ready solution.
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Figure 2: TSNE visualization of embeddings of dev test, dev train and eval datasets of gearbox (left) and slider (right)
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