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ABSTRACT

This report details the architecture we used to address Task 1 of the
of DCASE2022 challenge. Our architecture is based on 4 layer con-
volutional neural network taking as input a log-mel spectrogram.
The complexity of this network is controlled by using separable
convolutions in the channel, time and frequency dimensions. More-
over, we introduce a novel attention mechanism by embedding po-
sitional information into channel attention, which we call coordi-
nate attention to improve the accuracy of a CNN-based framework.
Besides, we use SpecAugment++, time shifting and test time aug-
mentations to further improve the performance of the system.

Index Terms— Acoustic Scene Classification, Separable Con-
volutions, Coordinate Attention, Data Augmentation

1. INTRODUCTION

Extracting information from audio signals can be a great improve-
ment in existing applications or future products (home assistants,
wildlife monitoring, autonomous cars, etc.). Machine listening is
understood as the set of algorithms that are capable of extracting
relevant information from audio. One of the most common tasks in
this field is known as Acoustic Scene Classification (ASC) [1–4].
The ultimate goal is to extract context information from the audio,
more specifically, to predict the location where the audio is pro-
duced (park, metro station, airport, etc.). This problem has been
addressed in all previous editions of DCASE, and has been modi-
fied with different restrictions [5]. In this report, an ASC system is
designed to be limited by the size of the model and the extra diffi-
culty that the audios used in the training come from different audio
sources (mismatch devices).

2. MODEL

2.1. Separable Convolutions

Our architecture is based on CNN6 described in [6]. This network
consists of 4 convolutional layers using 5 × 5 filters, followed by a
global pooling layer and a final MLP.

To reduce the number of parameters, we replace each of the
original 5 × 5 convolutional layers with separable convolutions
along the channel, time and frequency axes [7].

Let X ∈ Rn×c denote a feature map of spatial dimension n
with cin channels. In the original convnet CNN6, the feature maps
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from one layer to the next satisfy

Y = f5×5(X), (1)

where f5×5 : Rn×cin → Rn×cout denotes a regular convolution
layer with a kernel of size 5 × 5 giving a feature map Y of spatial
dimension n with cout channels. To reduce the parameter numbers,
we replace (1) by

Y = h3×1(g1×1(X)) + h1×3(g1×1(X)), (2)

where g1×1 : Rn×cin → Rn×cout denotes a regular convolution
layer with a kernel of size 1 × 1, and h3×1, h1×3 : Rn×cout →
Rn×cout denote two different channel-wise convolutions with ker-
nels of size 3 × 1 and 1 × 3, respectively, dilated by 2 to keep a
receptive field similar to the one of g5×5.

2.2. Coordinate Attention

Recent studies on mobile network [8] design have demonstrated the
remarkable effectiveness of channel attention (e.g., the Squeeze-
and-Excitation attention) [9] for lifting model performance, but they
generally neglect the positional information, which is important for
generating spatially selective attention maps. In this paper, we in-
troduce a novel attention mechanism by embedding positional in-
formation into channel attention, which we call coordinate atten-
tion [10]. Unlike channel attention that transforms a feature tensor
to a single feature vector via 2D global pooling, the coordinate at-
tention factorizes channel attention into two 1D feature encoding
processes that aggregate features along the two spatial directions,
respectively. In this way, long-range dependencies can be captured
along one spatial direction and meanwhile precise positional in-
formation can be preserved along the other spatial direction. The
resulting feature maps are then encoded separately into a pair of
direction-aware and position-sensitive attention maps that can be
complementarily applied to the input feature map to augment the
representations of the objects of interest. The coordinate attention
is simple and can be flexibly plugged into CNN-based models.

A coordinate attention block can be viewed as a computational
unit that aims to enhance the expressive power of the learned fea-
tures for CNN networks. It can take any intermediate feature tensor
X as input and outputs a transformed tensor with augmented repre-
sentations of the same size to X . The more detailed implementation
of this block can be seen in [10].
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Figure 1: Network architecture. The separable convolution block shows the architecture we use in place of 5 × 5 convolutions in CNN6.

2.3. Complete Architecture

The complete architecture is presented in Figure 1. The layers con-
sist of a convolutional layer, two batch normalisation layers, a ReLU
activation, a coordinate attention block, an average pooling layer
and a MLP network. The average pooling layer reduces the resolu-
tion by 2 in the time and frequency axes with a kernel of size 2 × 2.
The global pooling layer consists of (i) a global averaging pooling
along the frequency axis followed by (ii) a global averaging and a
max pooling along the time axis, the results of both pooling being
summed together to yield a feature vector of size 128 that enters
the final MLP for classification. This MLP contains two layers with
a hidden dimension of 128 using a ReLU activation in the hidden
layer.

3. DATA AUGMENTATIONS

3.1. SpecAugment++

Different from other popular data augmentation methods such as
SpecAugment [11] and mixup [12] that only work on the input
space, SpecAugment++ [13] is applied to both the input space and
the hidden space of the deep neural networks to enhance the in-
put and the intermediate feature representations. For an interme-
diate hidden state, the augmentation techniques consist of masking
blocks of frequency channels and masking blocks of time frames,
which improves generalization by enabling a model to attend not
only to the most discriminative parts of the feature, but also the en-
tire parts.

Let x ∈ RT×F denote the intermediate hidden state (or the
input spectrogram), where T and F denote the number of frames
and frequency bins, respectively. Time masking is applied so that t
consecutive time frames [t0, t0 + t] are masked, where t is chosen
from a uniform distribution from 0 to the time mask parameter t′,
and t0 is chosen from [0, T − t]. Similarly, frequency masking is
applied so that f consecutive frequency bins [f0, f0+f ] are masked,
where f is first chosen from a uniform distribution from 0 to the
frequency mask parameter f ′, and f0 is chosen from [0, F − f ].

For masking schemes, we use the mini-batch based mixture
masking (MM). MM utilizes the time frames and frequency chan-
nels from another sample for masking, which mixes the masking
regions of the hidden states of the two samples by the mean. To
explain, if the hidden state in the l-th layer of the target sample is to
be augmented, we randomly select another sample within the same
mini-batch as the target sample and use the hidden state in the l-th
layer of the selected sample for masking.

3.2. Time Shifting

The goal of time shifting [14] is to encourage the model to learn
coherent predictions. Effectively, given a clip of multiple audio
frames X = [x1, ..., xT ], x ∈ RT×F , time rolling of length η

Table 1: Our results compared with the challenge baseline.

Method Model size (KB) Log Loss Accuracy

Challenge Baseline 46.512 1.575 0.429

Ours 75.562 1.295 0.603

will shift (and wrap around) the entire sequence by η frames to
X0 = [xη, ..., xT , ..., x1, ..., xη−1]. For each audio-clip, we draw
η from a normal distribution N(0, 10), meaning that we randomly
either shift the audio clip forward or backward by η frames.

3.3. Test Time Augmentation

Test-time augmentation (TTA) is commonly used in image classifi-
cation in order to increase the accuracy of a model predictions [15].
Contrary to data augmentations during training, TTA is applied dur-
ing inference. The main idea of TTA is that by making several ran-
domly augmented copies of the input sample, then averaging the
outputs for the augmented samples, more accurate predictions can
be made without changing the model. In our experiments, We aver-
age the softmax predictions from 30 different augmentations.

4. EXPERIMENTS

4.1. Training Details

The model is trained for 150 epochs, with a batch size of 32, a
weight decay of 10−5, using AdamW with a starting learning rate
of 10−3 and a cosine annealing scheduler decreasing the learning
rate to 10−5. We follow the same training pipeline in [6] to train
our model and evaluate it on the validation set. We use two dropout
layers [16]: the first on the input of the final MLP and the second
on its hidden layers. These layers drop each neuron with probability
0.1. All systems are trained by applying a softmax on the final logits
and using the cross-entropy loss.

4.2. Results

The overall results obtained by our system can be seen in Table 1.
Our model achieves the best overall performance of 60.3% which
improves DCASE baseline by 17.4%.

5. CONCLUSION

This technical report aims to describe our low-complexity ASC
models for DCASE 2022 task 1. We use separable convolutions
with the coordinate attention block as our network. Besides, we also
use SpecAugment++, time shifting and test time augmentations to
further improve the performance of our system. Our experiments
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conducted on DCASE 2022 Task 1 Development dataset have ful-
filled the requirement of low-complexity and achieved a log-loss of
1.295 and an accuracy of 60.3%, improving DCASE baseline by
17.4% within the 128 KB model size.
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