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ABSTRACT

This technical report describes our submission to DCASE 2022
Task 4: Sound event detection in domestic environments. We follow
a multi-resolution approach consisting on a late fusion of systems
that are trained with different feature extraction parameters, aim-
ing to leverage the characteristics of different event categories in
time and frequency. Our systems are built upon the Convolutional-
Recurrent Neural Network (CRNN) proposed by the baseline sys-
tem and the Conformer structure proposed by the winners of the
2020 challenge.

Index Terms— DCASE 2022, CRNN, Conformer, Mean
Teacher, Multi-resolution, Model fusion

1. INTRODUCTION

The aim of DCASE Task 4 is the detection and classification of
10 different sound event categories. These categories describe
sounds commonly found in domestic environments, and each cate-
gory presents different temporal and spectral properties. In previous
editions, we had already explored the idea of employing multiple
time-frequency resolution points during the feature extraction pro-
cess, aiming to exploit these differences, and finding that the combi-
nation of different time-frequency resolutions is beneficial for SED
performance in terms of F1 score [1, 2] and different scenarios of
the Polyphonic Sound Detection Score (PSDS) [3].

This paper describes our submission to DCASE 2022 Task 4,
which is based on the same multi-resolution approach. In addi-
tion to the multi-resolution CRNN proposed in previous challenges
[3, 4], this year we extend the multi-resolution approach to Con-
former networks [5]. Moreover, a different model selection strategy
is applied to the CRNN mean teacher networks, monitoring the per-
formance of the teacher model, instead of the student model.

2. DATASET

The dataset used in DCASE 2022 Task 4 is DESED (Domestic En-
vironment Sound Event Detection) [6, 7]. DESED is composed of
real recordings, obtained from Google AudioSet [8], and synthetic
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Resolution T++ T+ BS F+ F++

N 1024 2048 2048 4096 4096
L 1024 1536 2048 3072 4096
R 128 192 256 384 512
nmel 64 96 128 192 256

Table 1: FFT length (N ), window length (L), window hop (R) and
number of Mel filters (nmel) of the five proposed resolution points
for CRNN. N , L, and R are reported in samples, using a sample
rate fs = 16000 Hz.

recordings which are generated using the Scaper library [9]. Real
recordings include the Weakly-labeled training set (1578 clips), the
Unlabeled training set (14412 clips) and the Validation set (1168
clips). Additionally, the Synthetic set contains 10000 strongly-
labeled, synthetic clips, generated such that the event distribution
is similar to that of the Validation set.

3. PROPOSED SOLUTIONS

3.1. Multi-resolution analysis

Our approach to multi-resolution consists on the definition of sev-
eral sets of parameters for the feature extraction process, each one
of them determining a resolution point. The extraction of mel-
spectrogram features, based in the Fast Fourier Transform (FFT),
implies a compromise between time resolution and frequency reso-
lution. Taking this fact into account, we design the resolution points
for a given system so that they cover a range from higher frequency
resolution to higher time resolution, with respect to the original res-
olution used by the system.

For each system, we consider its original resolution (which we
call baseline resolution, or BS) and define four additional resolu-
tion points: two of them are designed to obtain double resolution in
frequency (F++) or in time (T++), and the other two are the inter-
mediate points between BS and F++ (F+) or T++ (T+). In every
case, Hamming windows are used, and audio signals are sampled at
fs = 16000 Hz.
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Resolution T++ T+ BS F+ F++

N 512 1024 1024 2048 2048
L 512 768 1024 1536 2048
R 160 244 323 488 646
nmel 32 48 64 96 128

Table 2: FFT length (N ), window length (L), window hop (R) and
number of Mel filters (nmel) of the five proposed resolution points
for Conformer networks. N , L, and R are reported in samples,
using a sample rate fs = 16000 Hz.

3.2. Convolutional-Recurrent Neural Networks

Our CRNN models follow the structure and configuration of the
DCASE Task 4 baseline system [10]. The data distribution pro-
posed by the baseline system uses the Weakly-labeled, Unlabeled
and Synthetic sets to train the neural networks, reserving 10% of the
Weakly-labeled set, together with 2500 additional synthetic clips, as
a validation set for model selection.

Mean teacher [11] is used for semi-supervised learning. In con-
trast with the baseline system, we performed model selection mon-
itoring the teacher model, instead of the student model. This is mo-
tivated by the observation that the teacher models usually present
better performance in validation and test.

The parameters of the five resolution points for the CRNN mod-
els can be found in Table 1.

3.3. Conformer Networks

Our Conformer models follow the setup of the best submission
of the DCASE 2020 Task 4 challenge [12]. Such setup uses the
Weakly-labeled, Unlabeled and Synthetic sets for training, whereas
the DESED Validation set is used for model selection. Mean teacher
is used for semi-supervised learning, with no change to the original
system settings.

The parameters of the five resolution points for the Conformer
models can be found in Table 2.

3.4. Model combination

In order to use the information provided by the different resolu-
tions, a simple model combination method is proposed, based on
training individual models with each of the resolution points, and
then frame-wise averaging the sequences of scores obtained with
different resolutions. For a given input, the models output a differ-
ent score sequence for each class by means of a sigmoid layer, thus
the scores are bound between 0 and 1.

Therefore, for event class k and time frame t:

s
(comb)
k,t =

1

N

N∑
n=1

s
(n)
k,t (1)

Usually, different time resolutions in the features lead to dif-
ferent lengths of the score sequences: T1, T2, ...TN . In order to
compute the frame-wise average, the sequences s(1), ..., s(N) must
have the same length. We handle this by linearly interpolating the
sequences to the maximum length, Tmax = max{T1, T2, ...TN}.

3.5. Task-dependent median filtering

Once the combined score sequences s(comb) are obtained, a decod-
ing process is required in order to determine the predicted onsets

CRNN PSDS1 PSDS2 Ev-F1 (%) Int-F1 (%)
F++ 0.2887 0.5720 34.85 65.17
F+ 0.3411 0.5566 43.11 66.68
BS 0.3696 0.5706 43.45 66.07
T+ 0.3811 0.5633 43.65 66.90
T++ 0.3820 0.5743 42.86 66.15
Conformer PSDS1 PSDS2 Ev-F1 (%) Int-F1 (%)
F++ 0.2939 0.5362 40.09 65.05
F+ 0.2783 0.5606 35.41 63.96
BS 0.3418 0.5802 41.86 65.27
T+ 0.3356 0.5805 39.40 65.20
T++ 0.3492 0.5816 39.51 63.66

Table 3: Results of individual CRNN and Conformer systems
trained with different resolution points over the DESED Validation
set.

and offsets of the events. In the first place, this process involves
thresholding the scores to obtain binary sequences. After threshold-
ing, it is a common practice to smooth the resulting sequences by
means of a median filter.

Although by default we have used the fixed median filter length
(450ms) proposed by the baseline system, we have also computed
the optimal length of the median filter window for each class and
for each PSDS scenario (PSDS1 and PSDS2), considering a range
from 220ms to 1.5s.

Whereas the precise detection of event classes that tend to
present shorter durations needs shorter median filter windows,
longer events benefit from stronger smoothing with longer win-
dows. In an analogous way, the PSDS1 scenario can benefit from
shorter median filters, given that it aims for precise detections in
time. In contrast, PSDS2 is not so strict about time boundaries,
therefore it can benefit from longer median filters. The optimal val-
ues are searched over the DESED Validation set.

3.6. PSDS without class-instability penalty

Arguing that it might be desirable for a system to hold similar
performances for each class, PSDS introduces the parameter αST

(cost of instability across classes) [13]. This parameter weights the
penalty of the class-wise performance variability in the final PSDS.

In both PSDS1 and PSDS2, the instability cost is αST = 1.
Therefore, a class-dependent optimization (e.g. class-wise median
filtering) could result in a lower global PSDS even when improv-
ing the performance of every class, if the variance of performance
across classes increases.

Considering this situation, we propose a version of each PSDS
scenario with αST = 0. On the experimental side, these scenarios
allow to measure the impact of class instability in the final score,
whereas in practice, they could be useful for an application in which
the stability across classes is not a relevant factor. Moreover, the
penalty due to class-instability can be computed directly as the dif-
ference between the PSDS score with αST = 0 and with αST = 1:

costST = PSDS(αST = 0)− PSDS(αST = 1) (2)

4. RESULTS

The provided results consider 1153 clips of the DESED Validation
set, leaving out the ones that do not have annotations, as recently
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CRNN Resolutions PSDS1 PSDS2 Ev-F1 (%) Int-F1 (%)
3res F+, BS, T+ 0.3979 0.6063 45.81 69.59
3res-F F++, F+, BS 0.3729 0.6030 45.31 68.68
3res-T BS, T+, T++ 0.4164 0.6131 47.47 70.05
4res-F F++, F+, BS, T+ 0.3930 0.6130 47.43 70.22
4res-T F+, BS, T+, T++ 0.4135 0.6190 47.81 70.28
5res F++, F+, BS, T+, T++ 0.4022 0.6250 47.50 71.18
Conformer Resolutions PSDS1 PSDS2 Ev-F1 (%) Int-F1 (%)
3res F+, BS, T+ 0.3460 0.6357 42.58 68.57
3res-F F++, F+, BS 0.3494 0.6307 43.68 68.91
3res-T BS, T+, T++ 0.3708 0.6330 42.77 68.37
4res-F F++, F+, BS, T+ 0.3468 0.6452 43.46 68.53
4res-T F+, BS, T+, T++ 0.3696 0.6470 43.36 68.49
5res F++, F+, BS, T+, T++ 0.3664 0.6565 44.31 69.65
CRNN+Conformer Resolutions PSDS1 PSDS2 Ev-F1 (%) Int-F1 (%)
7res CRNN 4res-T, Conformer 3res-T 0.4218 0.6559 49.23 72.18
10res CRNN 5res, Conformer 5res 0.4101 0.6652 48.94 72.00

Table 4: Results of multi-resolution combinations of CRNN and Conformer systems over the DESED Validation set.

System Objective PSDS1 PSDS2 Ev-F1 (%) Int-F1 (%)
None 0.4218 0.6559 49.23 72.18

7res PSDS1 0.4279 0.6554 50.12 72.85
PSDS2 0.3962 0.6640 45.79 71.95
None 0.4101 0.6652 48.94 72.00

10res PSDS1 0.4172 0.6626 49.34 72.34
PSDS2 0.3473 0.6633 43.00 69.68

Table 5: Results of multi-resolution CRNN and Conformer systems over the DESED Validation set using task-dependent median filtering.
The Objective column indicates whether the objective criterion for the median filter length of each class is PSDS1, PSDS2, or none (fixed
median filtering).

PSDS1 PSDS2
Class 7res 7res-m 10res 10res-m
Alarm/bell/ringing 0.5723 0.5783 0.8817 0.8825
Blender 0.7765 0.7810 0.8853 0.9018
Cat 0.5124 0.5086 0.7687 0.7875
Dishes 0.2409 0.2487 0.5308 0.5355
Dog 0.3593 0.3686 0.7586 0.7686
Electric shaver/tooth. 0.8186 0.8204 0.9678 0.9725
Frying 0.7243 0.7421 0.9016 0.9142
Running water 0.6110 0.6141 0.8135 0.8251
Speech 0.6930 0.6954 0.8947 0.9059
Vacuum cleaner 0.8839 0.8853 0.9443 0.9498
Global, αST = 1 0.4218 0.4279 0.6652 0.6633
Global, αST = 0 0.6192 0.6243 0.7972 0.8040
costST 0.1974 0.1964 0.1320 0.1407

Table 6: Class-wise PSDS results of our submitted systems over the DESED Validation set. PSDS1 is computed with the 7res combination,
and PSDS2 with the 10res combination. Task-dependent median filtering is applied in 7res-m and 10res-m, taking PSDS1 and PSDS2,
respectively, as objective. In addition to the default PSDS settings (αST = 1), PSDS results with αST = 0 are provided, as well as the
class-instability penalties (costST ).
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Class 7res-m 10res-m
Alarm/bell/ringing 0.35 0.54
Blender 1.25 1.50
Cat 0.54 1.00
Dishes 0.35 1.50
Dog 0.22 1.44
Electric shaver/tooth. 1.50 1.38
Frying 1.50 1.50
Running water 1.18 1.06
Speech 0.61 1.00
Vacuum cleaner 1.50 0.86

Table 7: Best median filter lengths, in seconds, obtained for each
class over the DESED Validation set. In 7res-m, the lengths are op-
timized for PSDS1, whereas in 10res-m, the lengths are optimized
for PSDS2. A range from 0.22s to 1.50s is considered.

suggested by the organization. All of them have been computed
using psds-eval 0.5.0.

4.1. Single-resolution results

In the first place, we trained a total of 10 single resolution systems,
5 CRNNs and 5 Conformers, each one using a different resolution
point for feature extraction. Their results are presented in Table 3.
It is to be noted that each resolution point is obtained with different
parameters in CRNN and Conformer, as shown in Tables 1 and 2.

4.2. Multi-resolution results

We have defined several combinations of the single-resolution sys-
tems, considering only CRNNs, only Conformers, or both. The
combinations are performed following the process described in Sec-
tion 3.4, and their results are presented in Table 4. The median filter
length considered is fixed to 450ms.

Six different combinations of up to five resolution points are
evaluated for CRNNs and for Conformers. Afterwards, two addi-
tional combinations are proposed, joining the best CRNN and Con-
former combinations for either PSDS1 or PSDS2. These combina-
tions are formed by 7 resolutions (7res) and 10 resolutions (10res),
respectively.

4.3. Results with task-dependent median filtering and custom
PSDS scenarios

Using the best combined systems obtained for PSDS1 (7res) and
PSDS2 (10res), we have applied the task-dependent median filter-
ing described in Section 3.5. For a given system, a different set of
median filter lengths is learnt when setting either PSDS1 or PSDS2
as the objective criterion.

The PSDS1 performance improves when the median filters
are tuned according to best class-wise PSDS1 performance (from
0.4218 to 0.4279 in 7res, and from 0.4101 to 0.4172 in 10res). Ad-
ditionally, this criterion is helpful for F1-based performance as well.

When tuning the median filters to maximize class-wise PSDS2,
the PSDS2 performance in 7res improves (from 0.6559 to 0.6640).
However, for the 10res system, the obtained PSDS2 is lower (from
0.6652 to 0.6633). The median filters learnt with this criterion are
noticeably less useful for PSDS1 or F1-based metrics.

Our submission includes the 7res and 10res systems with fixed
(450ms) median filtering, the 7res system with task-dependent me-
dian filtering with PSDS1 objective (7res-m), and the 10res system
with task-dependent median filtering with PSDS2 objective (10res-
m). In this way, we have two systems optimized for the PSDS1
scenario (7res and 7res-m), and two optimized for PSDS2 (10res
and 10res-m).

Considering these four systems, we have studied the class-
wise performance and the PSDS performance without the class-
instability penalty, described in Section 3.6. The results, presented
in Table 6, assert that task-dependent median filtering reaches a bet-
ter class-wise performance for each individual, but achieves a lower
global PSDS due to the instability penalty. In contrast, if class-
instability is not taken into account (αST = 0), the task-dependent
median filtering holds better results than the fixed median filtering.
The median filters used by 7res-m and 10res-m are described in Ta-
ble 7.

5. CONCLUSIONS

In this technical report, our submission for DCASE 2022 Task 4
is described. Following the multi-resolution approach that we had
used in previous editions, we have trained SED systems using dif-
ferent resolution settings for feature extraction, and then we have
computed their combinations as a frame-wise average of their score
sequences.

In addition to our previous participations, this year we have also
applied multi-resolution to Conformer networks. We maintain the
mean teacher CRNNs, but using a different model selection strategy,
in which the teacher model, instead of the student, is monitored
for model selection. The best results are obtained when combining
together both CRNN and Conformer systems.

Moreover, we have applied a task-dependent class-wise median
filtering, searching for each class the median filter length that maxi-
mizes either the PSDS1 or the PSDS2 scenario. This process allows
to improve the class-wise performances of a system in a particular
PSDS setting.

Furthermore, we propose two custom PSDS scenarios, obtained
by setting the cost of instability across classes (αST ) to zero in
PSDS1 and PSDS2. These settings have provided an interpretation
of the impact of class-wise performance optimization on the final
PSDS score.

6. REFERENCES

[1] D. de Benito-Gorrón, D. Ramos, and D. T. Toledano, “A
multi-resolution CRNN-based approach for semi-supervised
Sound Event Detection in DCASE 2020 Challenge,” IEEE Ac-
cess, 2021 (early access).

[2] ——, “An analysis of sound event detection under acous-
tic degradation using multi-resolution systems,” Applied
Sciences, vol. 11, no. 23, 2021. [Online]. Available:
https://www.mdpi.com/2076-3417/11/23/11561

[3] D. de Benito-Gorrón, S. Segovia, D. Ramos, and
D. T. Toledano, “Multiple feature resolutions for differ-
ent polyphonic sound detection score scenarios in dcase 2021
task 4,” in Proceedings of the Detection and Classification of
Acoustic Scenes and Events 2021 Workshop (DCASE2021),
Barcelona, Spain, November 2021, pp. 65–69.



Detection and Classification of Acoustic Scenes and Events 2022 Challenge

[4] D. de Benito-Gorrón, D. Ramos, and D. T. Toledano, “A
multi-resolution approach to sound event detection in dcase
2020 task4,” in Proceedings of the Detection and Clas-
sification of Acoustic Scenes and Events 2020 Workshop
(DCASE2020), Tokyo, Japan, November 2020, pp. 36–40.

[5] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu,
W. Han, S. Wang, Z. Zhang, Y. Wu, et al., “Conformer:
Convolution-augmented transformer for speech recognition,”
arXiv preprint arXiv:2005.08100, 2020.

[6] N. Turpault, R. Serizel, A. Parag Shah, and J. Salamon,
“Sound event detection in domestic environments with
weakly labeled data and soundscape synthesis,” in Workshop
on Detection and Classification of Acoustic Scenes and
Events, New York City, United States, October 2019.
[Online]. Available: https://hal.inria.fr/hal-02160855

[7] R. Serizel, N. Turpault, A. Shah, and J. Salamon, “Sound
event detection in synthetic domestic environments,” in
ICASSP 2020 - 45th International Conference on Acoustics,
Speech, and Signal Processing, Barcelona, Spain, 2020.
[Online]. Available: https://hal.inria.fr/hal-02355573

[8] J. F. Gemmeke, D. P. W. Ellis, et al., “Audio set: An ontology
and human-labeled dataset for audio events,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), New Orleans, LA, 2017.

[9] J. Salamon, D. MacConnell, M. Cartwright, P. Li, and J. P.
Bello, “Scaper: A library for soundscape synthesis and aug-
mentation,” in 2017 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA), 2017, pp. 344–
348.

[10] N. Turpault and R. Serizel, “Training sound event detection on
a heterogeneous dataset,” in Proceedings of the Detection and
Classification of Acoustic Scenes and Events 2020 Workshop
(DCASE2020), Tokyo, Japan, November 2020, pp. 200–204.

[11] A. Tarvainen and H. Valpola, “Mean teachers are better role
models: Weight-averaged consistency targets improve semi-
supervised deep learning results,” in Advances in neural in-
formation processing systems, 2017, pp. 1195–1204.

[12] K. Miyazaki, T. Komatsu, T. Hayashi, S. Watanabe, T. Toda,
and K. Takeda, “Conformer-based sound event detection with
semi-supervised learning and data augmentation,” in Proceed-
ings of the Detection and Classification of Acoustic Scenes
and Events 2020 Workshop (DCASE2020), Tokyo, Japan,
November 2020, pp. 100–104.

[13] Bilen, G. Ferroni, F. Tuveri, J. Azcarreta, and S. Krstulović,
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