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ABSTRACT

The choice of the loss function is a critical aspect of machine/deep
learning. In this study, we investigate the use of the concor-
dance correlation coefficient (CCC) as a loss function for first-shot
anomaly sound detection. We compare the performance of CCC
with the commonly used loss function, mean squared error (MSE).
Furthermore, we benchmark CCC, MSE, and selective Malahanobis
distance equally. The results show that CCC outperforms MSE and
Selective Mahalanobis in terms of the harmonic mean of pAUC
scores. We repeated the experiments of our method with CCC five
times, and we obtained similar results across four runs showing the
stability of our method.

Index Terms— anomalous sound detection, condition-based
monitoring, concordance correlation coefficient, loss function

1. SYSTEM DESCRIPTION

The description of the system can be read in the original papers
[3, 4, 2] along with their implementations [1]. The dataset for the
2023 challenge is based on the datasets provided in the previous
years [5, 6]. The only change we made is to change the loss function
(loss_fn function in the original implementation) from MSE to
the concordance correlation coefficient.

CCC loss (CCCL) is formulated as

CCC =
2ρxyσxσy

σ2
x + σ2

y + (µx − µy)2
, (1)

CCCL = 1− CCC, (2)

where µx and µy are the means of the predicted and ground truth
values, respectively. σx and σy are the standard deviations of the
predicted and ground truth values, respectively, and ρxy is the Pear-
son correlation between the predicted and ground truth values. CCC
loss is arguably more effective than other error-based loss functions,
especially when the metric is CCC. CCC is more effective than
other correlation functions since it not only accounts for the rela-
tion of the two variables but also for the exact difference in values
[7].

Listing 1 shows our results with CCC loss and original MSE
baseline, while Table 1 shows its results. It is shown from four
experiments that the CCC loss is arguably better for obtaining the
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average pAUC scores than MSE and selective Mahalanobis distance
methods.
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Listing 1: CCC loss function in Python
def l o s s f n ( s e l f , r e con x , x ) :

””” CCC l o s s f u n c t i o n ”””
e p s i l o n = 1e−8

# F l a t t e n t h e i n p u t t e n s o r s
r e c o n x f l a t = r e c o n x . view ( r e c o n x . shape [ 0 ] , −1)
x f l a t = x . view ( x . shape [ 0 ] , −1)

# C a l c u l a t e means
recon mean = t o r c h . mean ( r e c o n x f l a t , dim =1 , keepdim=True )
x mean = t o r c h . mean ( x f l a t , dim =1 , keepdim=True )

# C en te r t h e t e n s o r s
r e c o n c e n t e r e d = r e c o n x f l a t − recon mean
x c e n t e r e d = x f l a t − x mean

# C a l c u l a t e v a r i a n c e s
r e c o n v a r = t o r c h . mean ( r e c o n c e n t e r e d ** 2 , dim =1 , keepdim=True )
x v a r = t o r c h . mean ( x c e n t e r e d ** 2 , dim =1 , keepdim=True )

# C a l c u l a t e c o v a r i a n c e
r e c o n c o v = t o r c h . mean ( r e c o n c e n t e r e d * x c e n t e r e d , dim =1 , keepdim=True )

# C a l c u l a t e CCC
ccc = 2 * r e c o n c o v / ( r e c o n v a r + x v a r + e p s i l o n )

# C a l c u l a t e CCC l o s s , 1 − CCC
c c c l o s s = 1 − ccc

re turn c c c l o s s

Table 1: Results of experiments with CCC loss
System Metric ToyCar ToyTrain fan gearbox bearing slider valve Mean

Baseline MAHALA AUC (source) 73.66 57.22 69.92 48.70 54.01 56.97 45.72 58.03
AUC (target) 42.94 40.90 31.42 53.66 43.25 42.93 46.87 43.14

pAUC (source, target) 49.00 48.32 50.61 50.18 49.87 48.45 49.37 49.40
Baseline MSE AUC (source) 68.62 59.72 69.28 50.20 52.91 60.11 48.14 58.43

AUC (target) 46.36 57.28 30.96 54.84 44.65 41.25 47.43 46.11
pAUC (source, target) 50.42 48.47 50.53 50.63 49.79 50.26 49.03 49.88

CCC #1 AUC (source) 59.18 57.74 44.06 58.26 52.39 53.53 47.76 53.27
AUC (target) 54.52 54.18 57.32 59.48 49.11 49.87 48.79 53.32

pAUC (source, target) 48.68 50.16 50.79 50.97 50.29 50.45 50.03 50.20
CCC #2 AUC (source) 59.14 58.78 46.34 58.02 51.91 53.91 47.50 53.66

AUC (target) 54.28 53.56 54.26 59.44 48.61 49.71 48.55 52.63
pAUC (source, target) 48.63 49.89 52.00 50.82 50.45 50.82 49.97 50.37

CCC #3 AUC (source) 59.10 58.76 45.12 58.00 51.33 53.75 47.50 53.37
AUC (target) 54.22 53.74 55.40 59.26 49.23 49.87 49.09 52.97

pAUC (source, target) 48.89 50.05 51.18 50.55 50.63 50.79 49.97 50.29
CCC #4 AUC (source) 58.52 58.58 45.02 57.76 52.01 53.71 47.40 53.29

AUC (target) 54.58 53.94 55.00 59.42 49.01 49.99 48.73 52.95
pAUC (source, target) 48.79 50.16 51.37 50.87 50.71 50.71 49.97 50.37


