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ABSTRACT

In this technical report we describe our submission to DCASE 2023
Task 4A: Sound Event Detection with Weak Labels and Synthetic
Soundscapes. Considering that the different scenarios proposed for
the Polyphonic Sound Event Score (PSDS) highlight diverse prop-
erties of a Sound Event Detection (SED) system, we have employed
two different architectures for optimizing each scenario. Whereas
we exploit the temporal benefits of Convolution Recurrent Neu-
ral Networks (CRNNs) for maximizing the PSDS1, we employ a
Conformer network for improving sound events classification and
therefore enhancing PSDS2. Additionally, we follow the multi-
resolution approach successfully employed in previous DCASE edi-
tions to take advantage of the temporal and spectral disparities
among the different sound event categories.

Index Terms— DCASE 2023, Conformer, CRNN, Mean
Teacher, Multi-resolution, Model fusion

1. INTRODUCTION

This technical report describes our submission to DCASE 2023
Task 4A, whose goal is the detection and classification of 10 dif-
ferent sound event categories. In order to evaluate the systems’
performance, two scenarios are defined for the Polyphonic Sound
Event Detection Score (PSDS) [1]. Whereas the first one is focused
on a fast reaction upon sound events detection, the second one is
defined in order to penalize the confusion between classes. There-
fore, taking into account the diverse objectives of each scenario we
decide to implement two different systems to improve each PSDS
separately:

• For the scenario 1 we employ a convolutional recurrent neu-
ral network (CRNN) to exploit the temporal variations of each
category with the aim of improving the localisation of events.

• For the scenario 2 we employ a Conformer (convolutional-
augmented transformer) [2] which shows a better performance
when dealing with sound events classification.

As in previous editions we followed a multi-resolution ap-
proach [3, 4, 5], which shows that combining different time-
frequency configurations, also known as resolution points, during
the feature extraction process can enhance the performance of a
SED system due to the variability among the diverse sound classes.

Resolution T++ T+ BS F+ F++

N 1024 2048 2048 4096 4096
L 1024 1536 2048 3072 4096
R 128 192 256 384 512
nmel 64 96 128 192 256

Table 1: FFT length (N ), window length (L), window hop (R) and
number of Mel filters (nmel) of the five resolution points employed
for the feature extraction. N , L, and R are reported in samples,
using a sample rate fs = 16000 Hz.

Besides, we further improve the results by employing a class-wise
median filter for post-processing.

2. DATASET

The data proposed for the DCASE Task 4A is the DESED (Domes-
tic Environment Sound Event Detection) dataset [6]. This dataset
contains both real recordings, which are obtained from Google Au-
dioSet [7], and synthetically generated audios employing the Scaper
library [8]. The training data is composed of a synthetic strongly-
labeled set (10000 clips), a real weakly-labeled set (1578 clips) and
a real unlabeled set (14412 clips).

For selecting the best model during the training procedure, the
synthetic validation set (2500 clips) together with a 10% of the
weakly-labeled set is employed. For testing, we employ the vali-
dation set, which was constructed to match the clip-per-class distri-
bution of the weakly labeled training set. It is composed of 1168
real audio clips annotated with strong labels.

3. PROPOSED SOLUTIONS

3.1. Multi-resolution analysis

As in previous editions, we follow a multi-resolution approach
which consist on varying the parameters employed for the extrac-
tion of mel-spectrogram features. Considering the trade-off be-
tween time and frequency resolution of the Short Time Fourier
Transform (STFT), we design a total of 5 resolution points such that
they span a range from higher frequency resolution to higher time
resolution, relative to the original resolution utilized by the baseline
system.
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As presented in Table 1, we establish the resolution of the base-
line system as the intermediate one (referred to as BS). From this
one we define four additional resolution points. Among these, two
are designed to double the resolution in frequency (F++) and in
time (T++), whereas the remaining two are halfway points between
BS and F++ (F+) or T++ (T+).

3.2. Convolutional-Recurrent Neural Networks

Our CRNN models follow the structure and configuration of the
DCASE Task 4A baseline system [9]. Mean teacher [10] is used
for semi-supervised learning. In contrast with the baseline system,
we perform model selection monitoring the teacher model instead
of the student model. This is motivated by the observation that the
teacher models usually exhibit superior performance in both valida-
tion and test set.

3.3. Conformer Networks

The Conformer system is based on the 2020 DCASE Task 4 winner
[11]. The audios employed for training this network have been nor-
malized to -3dbFS and a high pass filter of 10 Hz has been applied
to remove the continuous component.

We perform a hyperparameter tuning with the objective of en-
hancing the PSDS2 value, leading to an optimal configuration of 7
Conformer blocks with 4 attention heads each one and a encoder
dimension of 144.

Additionally, we substitute the CNN-based feature extractor for
a Frequency Dynamic Convolution [12] to improve the classifica-
tion of non-stationary sound events. For this CNN we employ con-
text gating as the activation function and define a time-resolution
reduction of 8 by adding one more average-pooling layer along the
temporal dimension.

Data augmentation techniques have also been applied to avoid
confusions between classes. We employ both Mixup and FilterAug-
ment [13] with a probability of 50% of applying them to the training
data. Mean teacher is used for semi-supervised learning and as well
as with our CRNN models, the best model is selected by monitoring
the teacher model. However, for the Conformer models the objec-
tive metric employed for model selection is PSDS2.

3.4. Model combination

Single resolution models can be combined by frame-wise averaging
the sequence of scores obtained after training them separately. For
a given input, the models output a different score sequence for each
class by means of a sigmoid layer, thus the scores are bound be-
tween 0 and 1. Therefore, the combination of N resolution points
for event class k and time frame t can be defined as follows:

s
(comb)
k,t =

1

N

N∑
n=1

s
(n)
k,t (1)

As this combination is performed frame-wise, the sequences
s(1), ..., s(N) must have the same length. However, the different
time resolutions defined in Table 1 lead to different lengths of the
score sequences: T1, T2, ...TN . For handling this issue we per-
form a linear interpolation of the sequences to the maximum length,
Tmax = max{T1, T2, ...TN}

CRNN PSDS1 PSDS2 Ev-F1 (%)
F++ 0.316 ± 0.004 0.561 ± 0.012 37.90 ± 0.60
F+ 0.347 ± 0.015 0.583 ± 0.022 41.84 ± 1.56
BS 0.369 ± 0.006 0.579 ± 0.015 43.18 ± 0.56
T+ 0.368 ± 0.039 0.550 ± 0.066 42.42 ± 2.49
T++ 0.374 ± 0.003 0.575 ± 0.015 42.86 ± 0.15
Conformer PSDS1 PSDS2 Ev-F1 (%)
F++ 0.194 ± 0.022 0.688 ± 0.015 21.03 ± 1.60
F+ 0.224 ± 0.030 0.696 ± 0.030 22.72 ± 0.82
BS 0.263 ± 0.020 0.688 ± 0.018 26.16 ± 0.95
T+ 0.251 ± 0.019 0.682 ± 0.014 25.78 ± 1.59
T++ 0.349 ± 0.029 0.668 ± 0.015 34.30 ± 1.29

Table 2: Average and standard deviation results of individual CRNN
and Conformer systems trained with different resolution points and
initialized with diverse seeds over the DESED Validation set. Inde-
pendent median filter was applied.

3.5. Class-dependent median filtering

The scores obtained as the output of a system require a decoding
process to obtain the onsets and offsets of each sound event pre-
diction. In a first phase, thresholding is employed for obtaining
binary sequences. Then, a common procedure for smoothing the
predictions is employing a median filter. This can be performed
employing a fixed value for the length of the filter or setting a spe-
cific length to each class considering its properties. To evaluate the
benefits of each post-processing technique, we will apply both of
them to our final systems.

When it comes to the fixed post-processing, we employ a me-
dian filter length of 450 ms for our CRNN models, whose value in
frames will vary depending on the resolution point. However, as the
Conformer models output shorter sequences, we employ for all the
resolution points a fixed value of 7 frames.

In order to further optimize the objective metric of each system,
we have developed a class-dependent median filtering in which the
optimal lengths of each class are computed based on one of the
PSDS scenarios, iterating over a range from 1 to 29 frames over
the DESED Validation set. Considering that the first scenario bene-
fits from the precise detection of sound events, shorter median filter
windows will improve the localisation. Conversely, the PSDS2 im-
poses penalties for class confusion, and thus, longer median filters
may be advantageous for avoiding potential cross-triggers.

4. RESULTS

Results are provided for the recently proposed threshold-
independent PSDS [14] over the 1168 audio clips that compose the
DESED Validation set. Each model has been trained with three dif-
ferent initializations with the aim of estimating the performance’s
standard deviation. Additionally, the systems are evaluated with the
event-based F1-score, which is computed using psds-eval 0.5.0.

4.1. Single-resolution results

As a first step, we train both the CRNN and the Conformer models
with the parameters presented in Table 1, obtaining for each one a
total of 5 single resolution systems. In Table 2 we present the re-
sults obtained for each system employing the fixed post-processing
mentioned in Section 3.5.
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CRNN Resolutions PSDS1 PSDS2 Ev-F1 (%)
3res F+, BS, T+ 0.397 ± 0.010 0.615 ± 0.012 45.47 ± 0.25
3res-F F++, F+, BS 0.375 ± 0.007 0.617 ± 0.013 44.68 ± 1.29
3res-T BS, T+, T++ 0.401 ± 0.007 0.611 ± 0.014 45.80 ± 1.04
4res-F F++, F+, BS, T+ 0.390 ± 0.007 0.623 ± 0.012 45.53 ± 1.76
4res-T F+, BS, T+, T++ 0.405 ± 0.005 0.624 ± 0.013 46.01 ± 1.00
5res F++, F+, BS, T+, T++ 0.398 ± 0.005 0.632 ± 0.011 45.87 ± 1.24
Conformer Resolutions PSDS1 PSDS2 Ev-F1 (%)
3res F+, BS, T+ 0.275 ± 0.012 0.719 ± 0.017 26.27 ± 0.94
3res-F F++, F+, BS 0.255 ± 0.015 0.722 ± 0.014 24.58 ± 1.13
3res-T BS, T+, T++ 0.329 ± 0.013 0.715 ± 0.017 30.46 ± 0.09
4res-F F++, F+, BS, T+ 0.268 ± 0.010 0.724 ± 0.015 25.85 ± 0.09
4res-T F+, BS, T+, T++ 0.309 ± 0.017 0.721 ± 0.016 29.84 ± 1.77
5res F++, F+, BS, T+, T++ 0.306 ± 0.006 0.727 ± 0.015 28.11 ± 0.23

Table 3: Average and standard deviations results for multiple initialization seeds of multi-resolution combinations of CRNN and Conformer
systems over the DESED Validation set. Independent median filter was applied.

Objective Model PSDS1 PSDS2 Ev-F1 (%)

PSDS1 CRNN T++ 0.387 ± 0.004 0.585 ± 0.012 44.00 ± 0.05
CRNN 4res-T 0.416 ± 0.005 0.626 ± 0.016 47.02 ± 0.95

PSDS2 Conformer F+ 0.164 ± 0.018 0.740 ± 0.033 22.01 ± 0.82
Conformer 5res 0.243 ± 0.007 0.781 ± 0.017 25.22 ± 0.54

Table 4: Average and standard deviations results for multiple initialization seeds of our submitted systems over the DESED validation set
employing class-dependent median filtering. The Objective column indicates the objective metric employed for optimizing the median filter
length of each class.

4.2. Multi-resolution results

Single-resolution models are combined following the process de-
scribed in Section 3.4 in order to obtain multi-resolution systems. In
Table 3 the results of six combinations up to five resolution points
are presented individually for CRNNs and Conformers. For both
architectures, the results obtained combining different resolutions
show an enhancement with respect to the ones obtained employing
a unique resolution point.

Additionally, we combine different resolution points of both ar-
chitectures. However, this doesn’t seem to benefit any of the two
scenarios proposed for the PSDS. Therefore, we don’t include these
systems and their results in the technical report.

4.3. Results with task-dependent median filtering

We have experimented with the class-dependent median filtering
described in Section 3.5 in our submitted models. In light of
the requirement of submitting a non-ensemble system we have
chosen the two optimal single-resolution systems (CRNN T++
and Conformer F+) and the two optimal multi-resolution systems
(CRNN 4res-T and Conformer 5res). Considering that the set of
median filters learnt vary depending on which metric is set as ob-
jective, we have considered for each system the same PSDS sce-
nario for which it has been designed: PSDS1 for CRNN models
and PSDS2 for Conformer ones.

The systems optimized for PSDS1 improve their results in this
metric when the median filter are tuned according the best class-
wise PSDS1 performance (from 0.374 to 0.387 in CRNN T++, and
from 0.405 to 0.416 in CRNN 4res-T). Additionally, this criterion
is helpful for the PSDS2 and the F1-based performance as well.

When it comes to the PSDS2, the systems optimized for this
scenario improve this metric when the median windows are tuned

class-wise (from 0.696 to 0.740 in CRNN T++, and from 0.727 to
0.781 in CRNN 4res-T). However, the median filters learnt with this
criterion do not improve the other metrics.

5. CONCLUSIONS

This technical report describes our submission for DCASE 2023
Task 4A. This year we have optimized each PSDS scenario sepa-
rately, employing a CRNN for optimizing PSDS1 and a Confomer
system for PSDS2. We have employed mean teacher for semi-
supervised learning but selecting the best model monitoring the
teacher network. Besides, in the case of the Conformer systems,
this model selection is applied over the PSDS2.

Following our previous multi-resolution approach, we have
trained SED systems employing different resolution settings for fea-
ture extraction. We then compute their fusion by averaging frame-
wise their score sequences. While the PSDS1 obtains the best re-
sults when combining CRNN systems trained with resolution points
enhanced in time, the PSDS2 achieves its highest combining all the
resolutions defined for the Conformer.

Furthermore, we implement a class-wise median filtering to fur-
ther improve the results. By searching for each class the median fil-
ter length that maximizes either the PSDS1 or the PSDS2 scenario,
we obtained an enhancement in the performance of our submitted
systems.
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