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ABSTRACT

In this technical report, we present the Tencent team’s entry
for Task 1 Low-Complexity Acoustic Scene Classification in the
DCASE 2023 challenge. We mainly follow the DCASE 2022 1st
place solution from the CP-JKU team and have made some adjust-
ments to meet the requirement of this year. Our approach involves
employing knowledge distillation to train low-complexity CNN
student models using Patchout Spectrogram Transformer (PaSST)
models as teachers. We initially train the PaSST models on Au-
dioset and then fine-tune them using the TAU Urban Acoustic
Scenes 2022 Mobile development dataset. Lastly, we quantize the
student models to enable 8-bit integer-based inference computations
to meet the low-complexity constraints in edge devices.

Index Terms— acoustic scene classification, knowledge distil-
lation, Vision transformer, PaSST, CNN

1. INTRODUCTION

Task 1 in the DCASE 2023 Challenge is to identify one of the ten
predefined scenes given one-second audio clips [1, 2]. This task is
challenging because the information contained in a 1-second audio
signal is quite limited. Besides, the goal is to ensure generalization
across multiple devices, and some devices appear only in the test
subset. This year, the Acoustic Scene Classification (ASC) situation
focuses on achieving classification using devices with limited com-
putational power and memory capacity, which in turn imposes con-
straints on model complexity, including the number of parameters
and the count of multiply-accumulate (MACs) operations. Specif-
ically, the maximum memory allowance for model parameters is
128KB (Kilobyte), and the limit of the maximum number of MACS
per inference is 30 million. Submissions will be ranked by weighted
average rank of classification accuracy, memory usage, and MACs.
Hence, the systems being submitted should place significant em-
phasis on effectively balancing the trade-off between classification
accuracy and model size.

In the last decade, as neural networks gained prominence, Con-
volutional Neural Networks (CNNs) have emerged as the de-facto
standard for end-to-end audio classification models. These models
strive to establish a direct mapping between audio waveforms or
spectrograms and their corresponding labels. [3, 4]. More recently,
neural networks based purely on self-attention, such as the Audio
Spectrogram Transformer (AST) [5], have been shown to further
outperform deep learning models constructed with CNNs on vari-
ous audio classification tasks, thus extending the success of Trans-
formers from natural language processing, and computer vision to

the audio domain. Based on the AST model, many of its vari-
ants, such as Patchout Spectrogram Transformer (PaSST) [6], Hi-
erarchical Token Semantic Audio Transformer (HTS-AT) [7] have
achieved remarkable results in audio tagging and sound event de-
tection tasks.

The outstanding performance of these AST-based variants in
audio classification and detection tasks demonstrates the poten-
tial of self-attention mechanisms and transformer architectures in
the field of audio processing. Conversely, although Transformer
models exhibit superior performance, their high complexity makes
them less computationally efficient than CNN models, especially
for resource-limited devices.

In the research conducted by Gong et al. [8], the authors un-
cover an intriguing relationship between CNN and Transformer
models, advocating for the application of cross-model knowledge
distillation (KD) in audio classification tasks. By using either a
CNN or an AST model as the teacher and training a distinct model
as the student through knowledge distillation, the student model
exhibits substantial enhancement and exceeds the teacher’s perfor-
mance. Consequently, the knowledge-distilled CNN model, which
has only 8M parameters, surpasses the original AST with 88M pa-
rameters on the FSD50K dataset.

At the same time, the investigators at CP-JKU propose a train-
ing technique for effective CNNs that employ offline KD from
high-performing, intricate transformers [9]. By merging this train-
ing strategy with an efficient CNN architecture inspired by Mo-
bileNetV3, the resulting models surpass earlier solutions in both
efficiency and predictive performance.

Drawing from their previous research, the CP-JKU team sub-
mitted their solutions for DCASE 2022 Task 1 and won 1st
place [10]. Our approach primarily follows the CP-JKU team’s win-
ning solution for DCASE 2022, with some modifications to fulfill
this year’s requirements. Our method involves using knowledge dis-
tillation to train low-complexity CNN student models with PaSST
models serving as teachers. The PaSST models are trained on Au-
dioset and subsequently fine-tuned using the TAU Urban Acoustic
Scenes 2022 Mobile development dataset. Finally, the student mod-
els are quantized to facilitate 8-bit integer-based inference compu-
tations, adhering to the low-complexity constraints necessary for
edge devices. In our submissions, PaSST and Audioset are the only
external data sources used.

2. KNOWLEGE DISTILLATION

Although deep neural networks have achieved significant success
in various tasks, including image classification, and speech recog-
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nition, there is a growing need to develop resource-efficient deep
neural networks (e.g., with fewer parameters) without compromis-
ing accuracy. The challenge of deploying large deep neural network
models is especially pertinent for edge devices with limited memory
and computational capacity.

To tackle this challenge, a model compression method was pro-
posed to transfer the knowledge from a large model into training
a smaller model without any significant loss in performance [11].
KD transferring knowledge from a cumbersome teacher model to a
lightweight student model has been investigated to design efficient
neural architectures with high accuracy with a few parameters. The
KD process captures and “distills” the knowledge in an ensemble
of large models into a smaller single model that is much easier to
deploy without significant loss in performance.

Knowledge is transferred from the teacher model to the student
by minimizing a loss function, aimed at matching softened teacher
logits as well as ground-truth labels. The logits are softened by ap-
plying a “temperature” scaling function in the softmax, effectively
smoothing out the probability distribution and revealing inter-class
relationships learned by the teacher. We use KD in its original form,
as introduced in [11], and set the “temperature” parameter to 3 as
in [10].

3. TEACHER MODEL

For the training of teacher models, our goal is to achieve the high-
est possible accuracy using large models or even multiple ensemble
large models without considering the model size.

3.1. AST

We use an Audio Spectrogram Transformer (AST) [5] pretrained
on AudioSet full dataset here. First, the raw audio waveform is
downsampled using a sampling rate of 16kHz. Each waveform is
then converted to a sequence of 128-dimensional log Mel filter-
bank (Fbank) features computed with a 25ms Hanning window ev-
ery 10ms. We then split the spectrogram into a sequence of 16 × 16
patches with an overlap of 6 in both time and frequency dimensions
as described in [5]. We use the ImageNet-pretrained model as our
initial weights and use an initial learning rate of 1e-5 and train the
model for 5 epochs, the learning rate is cut into half every epoch
after the 2nd epoch.

After the model is trained, we fine-tune the AST model on the
TAU Urban Acoustic Scenes 2022 Mobile development dataset. We
use an initial learning rate of 1e-5 and decrease the learning rate
with a factor of 0.85 for every epoch after the 5th epoch.

3.2. EfficientNet

EfficientNet [12] is a recently proposed CNN architecture that has
shown an advantage in both accuracy and efficiency over previous
architectures. The original EfficientNet-B2 model for image clas-
sification has 9.11M parameters. Our training configuration here is
the same as that of AST, except that we have replaced the model
from AST to EfficientNet and increased the number of training
epochs to 30.

3.3. ConvNeXt

The ConvNeXt model was proposed in [12], and it is a pure convo-
lutional model, inspired by the design of Vision Transformers, that

Teacher Model Accuracy(%)
AST 56.7

EfficientNet 55.2
ConvNext 53.4
SwinTrans 56.9

PaSST-Ensemble 62.5

Table 1: Accuracy results of different teacher models on the valida-
tion set

claims to outperform them. Our training configuration here is the
same as that of the EfficientNet setup except that we have replaced
the model from EfficientNet with ConvNext.

3.4. SwinTrans

The Swin Transformer is a type of Vision Transformer. It builds hi-
erarchical feature maps by merging image patches in deeper layers
and has linear computation complexity to input image size due to
the computation of self-attention only within each local window. It
can thus serve as a general-purpose backbone for both image clas-
sification and dense recognition tasks. The HTS-AT approach in-
troduces the Swin Transformer block with a shifted window atten-
tion for sound classification and detection and shows good perfor-
mance [7]. Our training configuration here is the same as that of the
AST setup, but replace AST with SwinTrans.

3.5. PaSST

PaSST extends the AST model further by introducing a technique
called patchout to tackle the quadratic scaling of attention layers
concerning the sequence length and to improve the generalization
of trained transformers. PaSST models are well suited for training
on downstream tasks in a short amount of time resulting,

To train the PaSST model, the raw audio signal is down-
sampled using a sampling rate of 32kHz, and the input features are
extracted from the raw audio signals using a Short Time Fourier
Transformation (STFT) with a window size of 800 with 40% over-
lap. We apply a Mel-scaled filter bank to 128 frequency bins. We
use the pre-trained multiple PaSST models provided by [10], and
average the logits of all four different PaSST models to further im-
prove the results.

3.6. Experiemnt results

As shown in Table 1, the PaSST ensembled model achieves the best
performance with 62.5% accuracy on the development set. Due
to its excellent performance, we adopt the PaSST-Ensemble as our
teacher model in the following experiments and use it to produce
the “soft labels” for knowledge distillation.

4. STUDENT MODEL

To meet the competition requirements, the student model needs to
pursue the smallest possible model size while ensuring accuracy.
The study in [13] shows that a Receptive Field Regularized Con-
volutional Neural Network (RFR-CNN) and its variants CP-ResNet
performs well in previous editions of the DCASE challenge.

The raw audio signal is down-sampled using a sampling rate
of 32 kHz and the input features are extracted from the raw audio
signals using a Short Time Fourier Transformation (STFT) with a



Detection and Classification of Acoustic Scenes and Events 2023 Challenge

ACC(%) Logloss MEM MACs
system 1 57.5 1.147 127.6K 28.8M
system 2 58.1 1.178 79.9K 21.4M
system 3 57.4 1.190 79.9K 21.4M
system 4 57.0 1.198 63.5K 19.5M

Table 2: Results of the quantized models on the provided develop-
ment set split in terms of accuracy and validation loss

window size of 2048 and overlap of 36%. We apply a Mel-scaled
filter bank to end up with 256 frequency bins. We experiment with
mixing features and label information using Mixup [14] and mixing
the style of the recordings using MixStyle [15].

For system 1, we strictly follow the CP-ResNet model structure
described in [10]. The CNN’s initial width is set to 32 channels.
The number of channels for the next three residual blocks is 32, 64,
and 92, respectively. The input feature size of the neural network
is 1× 256× 44. After the convolution operation, a feature map of
size 95 × 15 × 10 is obtained. Then, global pooling is performed
to obtain a 92-dimensional feature and finally connected to a fully
connected layer with 10 output nodes.

For system 2 and system 3, we modify the kernel size for the
first convolutional layer in Stage 3 from 3 × 3 to 1 × 1. This ad-
justment can significantly reduce the number of model parameters
and reduce the number of model calculations. The distinction be-
tween System 2 and System 3 lies in their training methodologies;
System 2 is exclusively trained using Mixup, while System 3 does
incorporate both Mixup and Mixstyle in its training process.

In System 4, we implement an additional modification by alter-
ing the kernel size of the initial convolutional layer in Stage 2 from
from 3× 3 to 1× 1. This change contributes to a further reduction
in the model’s complexity.

5. QUANTIZATION

We use Post-Training Static Quantization as implemented in Py-
Torch to quantize all model parameters and perform all inference
computations with 8-bit integers. We use a subset of the training
data for calibration. We quantize all model parameters and the in-
put data using the quantization stub inserted into the model’s for-
ward pass.

6. SUBMISSIONS AND RESULTS

The final results on the development set split are reported in Table 2.
We use the official NeSsi toolkit to compute MEM and MACs pa-
rameters after the model quantization step.

7. CONCLUSION

In this technical report, we described the Tencent submission to
Task 1 of the DCASE 2023 challenge. We tried several differ-
ent teacher models and choose an ensemble of the audio spectro-
gram transformer PaSST as our teacher model. We then tried to
compress the knowledge into a low-complexity CP-ResNet student
model, while maintaining as much of the predictive performance as
possible. Finally, our quantized 8-bit light student model achieves
57.0% accuracy with lower model complexity compared with the
official baseline.
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