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ABSTRACT

The task 1 of DCASE 2023 Challenge incorporates a weighted av-
erage ranking of accuracy and complexity, which encourages par-
ticipants to build efficient systems for acoustic scene classification
(ASC). In this report, we propose TF-SepNet, a low-complexity
ASC model based on Time-Frequency Separable Convolution. Our
network architecture consists of a series of separable convolutional
layers that exploit time and frequency domains. We also improve
the performance of ResNorm by adding a few learnable parame-
ters. Furthermore, knowledge distillation is employed to transfer
knowledge from large model to smaller model. Additionally, de-
vice simulation is introduced for data augmentation in the device
domain. Overall, we evaluate the performance of our model on
the DCASE 2023 Task 1 development dataset following the offi-
cial cross-validation setup and achieve a classification accuracy of
53.9% with 6.83K parameters and 1.65M MACs.

Index Terms— Acoustic scene classification, efficient neural
network, device simulation, knowledge distillation

1. INTRODUCTION

Acoustic scene classification (ASC) [1] has gained significant at-
tention in recent years due to its wide range of applications, such as
surveillance, smart homes, and environmental monitoring. Acous-
tic scenes are commonly diffused with a large amount of mixed
information like the sounds of people talking, car driving, noise etc.
The Task 1 of DCASE (Detection and Classification of Acoustic
Scenes and Events) Challenge [2] is a well-known benchmark for
evaluating ASC methods, focusing on scene classification such as
underground stations, street traffic or public squares.

The dataset used for this task consists of recordings of 10 dis-
tinct acoustic scenes that were captured across 12 cities using var-
ious devices. Additionally, partially synthesized data was created
from the original recordings. To facilitate the challenge, each seg-
ment from the dataset was reduced in duration from 10 seconds to
1 second. This makes the task more challenging since the classifier
must now predict the acoustic scene based on much less informa-
tion, reducing the amount of informative features available for anal-
ysis. Furthermore, the 2023 DCASE Challenge Task 1 introduces
a new evaluation metric that considers both accuracy and complex-
ity, motivating participants to develop a comprehensive approach
to using low-computational resources rather than solely focusing

on meeting memory and MAC limits. This challenge presents an
exciting opportunity to explore innovative approaches for develop-
ing high-performing ASC models with low computational require-
ments.

In this report, we present our approach to solving the Task 1
of DCASE 2023 Challenge. Firstly, our proposed solution, TF-
SepNet, is a low-complexity neural network architecture based on
Time-Frequency Separable Convolution that leverages the property
of convolution operation in time and frequency domains. More-
over, a few learnable parameters are added to the Residual Nor-
malization [3] layer to further enhance the performance. Secondly,
the device-domain generalization ability of our model is improved
by introducing device simulation for data augmentation, which em-
ploys impulse responses from the MicIRP dataset [4] to simulate the
impact of diverse recording devices on recorded sounds. Thirdly,
different strategies of data augmentation are applied to address the
overfitting problem, i.e. Mixup [5] and Freq-MixStyle [6]. Finally,
knowledge distillation and quantization are the strategies for model
compression.

Our work contributes to the ASC literature by demonstrat-
ing the effectiveness of low-complexity neural network architec-
tures, knowledge distillation, and innovative data augmentation
techniques for achieving high accuracy on the DCASE 2023 Task
1 dataset. Through our comprehensive analysis and experimental
evaluations, we provide insights into the impact of different compo-
nents of our model, which can guide future research in the area of
ASC.

2. DATA PREPROCESSING AND AUGMENTATION

2.1. Dataset

The TAU Urban Acoustic Scene 2022 Mobile development dataset
[7] is a subset of the larger TAU Urban Acoustic Scenes 2022
dataset, consisting of recordings captured using mobile devices in
urban environments. The dataset includes 230,350 audio clips, each
with a duration of 1 seconds and a hard label of an acoustic scene.
There are totally 10 different acoustic scene categories including
airport, bus, metro, metro station, park, public square, street pedes-
trian, street traffic, tram, and urban park. The recordings were cap-
tured across several cities around the world and using a wide range
of mobile devices. While the dataset has a balanced distribution
of samples across each of the acoustic scene categories, it is worth
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(a) Device A (b) Simulated 1
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Figure 1: Examples of device simulation. (a) is extrated from a
recording of real device A. (b), (c) and (d) are simulated by con-
volving recording A with 3 different impulse responses.

noting that there is an imbalanced number of samples recorded by
diverse devices. The main recording device A was a Zoom F8
recorder with binaural microphones, which contributes to 73% of
the data. The simulated devices were synthesized by processing
data from device A. In addition, some devices of evaluation dataset
are unseen in development dataset.

2.2. Feature Extraction

Following the setup of [6], all audio segments are resampled with
32kHz sample rate. The features are extracted by using Short Time
Fourier Transform with window size of 2048 and hop size of 744.
A Mel-scaled filter bank is then applied with 128 frequency bins.
As a result, the shape of an input feature is 1× 128× 44.

2.3. Device Simulation

Device simulation is an audio-based augmentation method, which
aims to simulate recordings from one device to other devices. Fol-
lowing the official setup, a number of random recordings from de-
vice A is convolved with selected impulse response from the Mi-
cIRP dataset [4] to simulate a new device. A few examples are
visualized as shown in Fig. 1. The operation can be denoted by Eq.
(1),

F(a, v) = (a ∗ v)n =

∞∑
m=−∞

am · vn−m (1)

where a is the original recording of device A and v is the selected
impulse response, m and n represent the indices or time samples of
the signals being convolved.

In the experiments, 32 impulse response files are used for de-
vice simulation. For each impulse response, 7500 samples of device
A is randomly selected to create a new device. Therefore, the total
number of augmented data is 240,000.

Figure 2: Time-Frequency Separable Convolution.

2.4. Mixup and Freq-MixStyle

Mixup [5] and MixStyle [8] are two popular feature-based augmen-
tation techniques for creating synthetic samples. Both techniques
have been shown to be effective in improving the robustness and
accuracy of deep neural networks. Mixup generates a new train-
ing sample by linearly interpolating two random examples and their
corresponding labels, while MixStyle adapts the style of one ex-
ample to another using a learnable style transfer module. Freq-
MixStyle is introduced by [6] for the ASC task, which normalizes
the frequency bands instead of channels. The combination of Mixup
and Freq-MixStyle is applied to the input in our experiments.

The mixing coefficient of Mixup and Freq-MixStyle α is both
set to 0.3, while the probability of applying Freq-MixStyle p is ex-
perimented with different values.

3. ASC MODEL

3.1. Network Architecture

The proposed CNN architecture, called TF-SepNet, is designed to
be a low-complexity model that can efficiently extract discrimina-
tive features from audio recordings. TF-SepNet is based on the
Time-Frequency Separable Convolution, as illustrated in Fig. 2,
which separates the temporal and spectral information in the input
signals and processes them independently using two sets of convo-
lutional filters. The first 1 × 1 convolutional layer is used when
there is a need to expand or shrink the number of channels. Subse-
quently, a shuffle layer [9] is added to establish connections between
the channels, and the shuffle group is set to a quarter of the number
of input channels. Following this, the channels are evenly divided
into two halves and separately processed in the frequency and time
domains using separable operations, then residual identities are re-
spectively added to the outputs. Finally, the resulting feature maps
are concatenated together.

Specifically, as shown in Tab. 1, the architecture of TF-SepNet
is adopted from BC-ResNet [10] but the BC-ResBlocks are replaced
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BLOCK N SHAPE
Input feature - 1× F × T
Conv 5×5 - 2C × F/2× T/2

TF-SepConv 2 C × F/2× T/2
MaxPool 2×2 - C × F/4× T/4
TF-SepConv 2 1.5C × F/4× T/4

MaxPool 2×2 - 1.5C × F/8× T/8
TF-SepConv 2 2C × F/8× T/8
TF-SepConv 3 2.5C × F/8× T/8
Conv 1×1 - 10× F/8× T/8
AvgPool - 10× 1× 1

Table 1: Architecture of TF-SepNet. N denotes the number of
blocks. C, F , and T respectively represent the number of channel,
frequency bins, and time clips.

by TF-SepConv blocks. The model starts with a 5x5 convolution at
the beginning that downsamples using a 2x2 stride. Afterward, it
has a total of 9 TF-SepConv blocks and two 2x2 maxpool layers
with 2x2 stride. Lastly, a 1x1 convolution is performed prior to
global average pooling which allows the model to classify the out-
puts into 10 classes. The number of output channels C is leveraged
as a hyper-parameter to adjust the complexity of model.

3.2. Adaptive Residual Normalization

As illustrated in Eq. (2), frequency-instance normalization (Fre-
qIN) [3] generalizes the features on the device domain by apply-
ing instance normalization (IN) in the frequency dimension. More-
over, residual normalization (ResNorm) [3] adds an identity path to
FreqIN with a hyper-parameter λ for compensating the information
loss, as shown in Eq. (3).

FreqIN(x) =
x− µnf√
σ2
nf + ϵ

(2)

ResNorm(x) = λ · x+ FreqIN(x) (3)

Here the input feature x ∈ Rn×c×f×t is a 4-dimensional vector
with batch size, channels, frequency bins and temporal clips. µnf

and σnf separately indicate the mean and standard deviation of in-
put on n and f dimensions. ϵ is an extremely small constant for
numerical stability.

Inspired by [11], we introduces adaptive residual normalization,
as shown in Eq. (4), by adding trainable parameters to control the
trade-off between identity and FreqIN. By doing so, the normaliza-
tion behavior can be adaptively adjust based on the characteristics
of the data and the requirements of the task.

AdaResNorm(x) = (ρ · x+ (1− ρ) ·FreqIN(x)) · γ+ β (4)

Here ρ, γ and β are trainable parameters for balancing, scaling and
shifting. Adaptive residual normalization is inserted after the first
convolution layer and each stage of TF-SepConv blocks.

3.3. Knowledge Distillation

In this work, knowledge distillation is implemented as a means
of transferring knowledge from a larger model (referred to as the
”teacher” model) to a smaller model (referred to as the ”student”

model). Knowledge distillation has proven to be an effective ap-
proach for model compression and improving the generalization ca-
pabilities of smaller models in ASC tasks [6] [12].

During the training process, the student model not only learns
from the ground truth labels but also takes advantage of the soft
targets generated by the teacher model. As shown in Eq. (5), the
loss function consists of label loss and distillation loss. The label
loss is the cross entropy between student output and ground truth la-
bels. The distillation loss refers to the KL divergence between stu-
dent output and teacher soft targets. These soft targets represent the
teacher model’s output probabilities or logits, which provide more
nuanced information than simple one-hot labels. By considering the
soft targets, the student model can learn from the teacher model’s
knowledge about the underlying relationships and uncertainties in
the data.

L = Llabel + λLdist (5)

In this work, λ is set to 20 and the tempereture is set to 5. TF-
SepNet with C = 160 is chosen as the teacher model while only
TF-SepNet with C = 12 is used as the student model in this work.

4. TRAINING SETUP

We train the models for 200 epoch using Adam optimizer with de-
fault settings and batch size to 32. The learning rate is scheduled
to linearly increase from 0 to 0.01 in ten epochs as a warmup [13],
then decay to 0 with cosine annealing [14] for the rest of epochs. α,
p of Freq-MixStyle and dropout rate d are adjusted to improve the
overfitting problem. After training, Post-Training Static Quantiza-
tion in Pytorch [15] is implemented to quantize the parameters of
model to INT8 data type. The combination of Convolution, Batch
Norm and ReLu layers are fused to improve accuracy.

5. RESULTS AND SUBMISSIONS

The results are shown in Tab. 3. Our TF-SepNet (C = 40) outper-
forms BC-ResNet (C = 40) with fewer parameters. The Adaptive
ResNorm improves 0.3% of accuracy by introducing 2% param-
eters. Device simulation greatly increase the generalization abil-
ity of models in the device domain, which makes the accuracy
of the model in the unseen domains reach a level comparable to
that in the seen domains. With C being set to 12, 20, 40, 60 and
160, we get models with different complexities. Knowledge dis-
tillation leverages the expertise and generalization capabilities of
TF-SepNet (C = 160), resulting in improved performance of TF-
SepNet (C = 12). Submissions are shown in Tab. 2, and all submis-
sion models have been trained on the whole development dataset.

ID Model KD p

1 TF-SepNet, C=12
√

0.5
2 TF-SepNet, C=12 × 0.5
3 TF-SepNet, C=20 × 0.6
4 TF-SepNet, C=40 × 0.7

Table 2: Submissions
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Model Seen Unseen Performance
A B C S1 S2 S3 S4 S5 S6 Acc/% MACs/M Param/K

BC-ResNet, C=40 + ResNorm 66.0 52.4 56.7 54.2 55.1 59.0 50.2 50.4 43.3 54.2 10.23 87.04
TF-SepNet, C=40 + ResNorm 67.9 57.8 63.5 56.4 52.4 57.5 53.4 55.5 50.6 57.2 10.22 53.19

+ AdaResNorm (1) 67.3 58.4 64.1 57.0 52.4 56.5 54.8 55.0 51.8 57.5 10.22 54.27
+ Device Simulation (2) 76.5 60.3 68.4 63.2 61.6 67.1 61.9 61.4 58.6 64.3 10.22 54.27

TF-SepNet, C=12 + (1)(2) 62.1 49.8 56.4 47.7 50.4 53.8 52.5 49.9 44.8 51.9 1.65 6.83
+ Knowledge Distillation 64.4 52.9 58.8 52.0 48.8 55.7 53.5 53.1 46.1 53.9 1.65 6.83

TF-SepNet, C=20 + (1)(2) 69.6 56.0 61.0 54.3 54.5 59.5 56.5 56.1 50.3 57.5 3.42 15.89
TF-SepNet, C=60 + (1)(2) 79.2 62.1 69.2 64.6 61.1 68.8 64.6 66.2 59.5 66.2 20.39 115.15
TF-SepNet, C=160 + (1)(2) 89.4 69.8 78.0 77.0 74.0 79.3 76.4 75.2 69.2 76.5 242.18 757.05

Table 3: Results. These results are obtained by training 100 epochs for time saving while submissions by training 200 epochs.

6. CONCLUSION

In this report, we have presented our approach for solving Task 1
of the 2023 DCASE Challenge, which focuses on the efficiency of
ASC system. We propose TF-SepNet, a low-complexity network
based on Time-Frequency Separable Convolution, and outperform
the state-of-the-art ASC systems. In addition, we introduced de-
vice simulation to augment data in the device domain. Moreover,
we employed knowledge distillation to transfer knowledge from a
larger teacher model to a smaller student model.
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