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ABSTRACT

This paper is a technical report of the Hanyang University team sub-
mission for the DCASE 2023 challenge task 7, Foley Sound Syn-
thesis. The goal of the task is to build a generative model that can
synthesize high-quality and various foley sounds: the sounds of dog
barking, footsteps, gunshots, keyboards, moving motor vehicles,
rainy scenes, and sneezing. The core strategy of the submissions
is a diffusion probabilistic model-based acoustic model. Also, we
adopted adversarial training on the evidence lower bound (ELBO)
of the diffusion model for the higher quality. The submissions did
not use any external dataset and achieved lower Frechet audio dis-
tance (FAD) scores than the DCASE baseline, except for the sounds
of moving motor vehicles.

Index Terms— Diffusion probabilistic model, adversarial
training, sound synthesis

1. INTRODUCTION

Foley sound synthesis (FSS) is the task of generating realistic audio
effects from the given class indicators. The foley sounds comprise
some environmental sounds and event sounds such as rainy acoustic
scenes, sounds of gunshots, etc.

This report describes the technical approaches for the detection
and classification of acoustic scenes and events (DCASE) challenge
task 7 track B1. The goal of the task is to generate high-quality and
various sounds for the seven predefined sounds only using the given
dataset. The dataset contain sounds of dog barks, footsteps, gun-
shots, keyboards, moving motor vehicles, rainy scenes, and sneez-
ing.

One of the well-known issues of the generative task is the
trade-off between sample quality and diversity. Our solution to the
problem is designing the FSS model with a diffusion probabilistic
model [1] allowing the synthesis of both high-quality and diverse
sounds. Also, we adopted adversarial training to the evidence lower
boundary (ELBO) of the diffusion model to improve the quality of
samples [2, 3]. In the following sections, we will report the data
description, audio processing methods, strategies for the problem,
and results in detail.

∗corresponding author.
1https://dcase.community/challenge2023/task-
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Figure 1: Overall process of the proposed sound synthesis system.

2. AUDIO DATA

The development dataset2 consists of 4,850 audio clips with 4 s
lengths. Each audio clip was sampled from one of three datasets:
UrbanSound8K [4], FSD50K [5], and BBC Sound Effects, and con-
verted into a mono channel, 16-bit, and sampling rates of 22,050
Hz. Some sounds were zero-padded if the duration was shorter
than 4 s. The dataset is divided into seven classes: sounds of dog
barks, footsteps, gunshots, keyboards, moving motor vehicles, rainy
scenes, and sneezing (or cough), with more than 500 and less than
800 clips for each class. Within the class, the sounds consist of var-
ious patterns and characteristics. For example, the sounds of gun-
shots are composed of the sounds of different machine guns, pistols,
etc.

3. PROPOSED SOULTIONS

3.1. Overall process

Our systems consist of two main parts: an acoustic model and a
vocoder (Fig. 1). The acoustic model extracts an acoustic feature
corresponding to a given target ID; subsequently, the vocoder de-
codes the acoustic feature into the audible signal by phase recon-
struction. In this work, we design the acoustic model using diffu-
sion probabilistic model [1] and use pre-trained HiFiGAN [7] as the
vocoder. Also, the target IDs are implemented with one hot vectors.

3.2. Acoustic model

In many studies, diffusion probabilistic models have been shown
to generate high-quality and diverse samples [8, 9]. The main idea

2Dataset is available in https://drive.google.com/drive/
folders/1GzfZvYVdbgDXnykOR93C3LCchPYBPh5I
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of the diffusion model is to estimate the diffusion noise from the
diffused data. The diffusion process q(Xt|Xt−1) follows:

q(Xt|Xt−1) , N (
√

1− βtXt−1, βtI)

Xt =
√

1− βtXt−1 +
√
βtεt

=
√
ᾱtX0 +

√
1− ᾱtεt,

(1)

whereX0, {Xt}Tt=1, {βt}Tt=1, and T denote a log-mel spectrogram
of an original data, set of diffused data on t step, variance schedule,
and the total diffusion timesteps. The diffusion noise εt is sampled
from the normal distribution N (0, I), and the distribution of the
Xt converges to N (0, I) when t becomes closer to the T . If the
diffusion process is assumed as a Markov chain,Xt can be sampled
from X0 with the definition of ᾱt :=

∏T
t=1(1− βt). The diffusion

probabilistic model is defined as pθ(Xt−1|Xt, y), where the output
of denoising network εθ(Xt, t, y) estimates the observed diffusion
noise εt. We optimized the denoising network using the following
objective function:

LDDPM = EX0,εt,t[||εθ(Xt, t, y)− εt||22], (2)

which is simplified version of the ELBO of the log-likelihood. In
this work, we use the same variance schedule and the denoising
network (UNet) as used by Ho et al [1].

The token IDs are expressed as one-hot vectors and the vectors
indicate embedding vectors stored in the lookup tables implemented
by the PyTorch Embedding module. Subsequently, each embedding
is projected by two linear layers with a Gaussian error linear units
activation, and summed up with time embeddings. We also applied
classifier-free guidance [10] with null ID, and the ratio of null ID
was 0.2.
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Figure 2: Detailed architecture of the discriminator. In this work,
c = 40

3.3. Discriminator

Wang et al. [3] showed that the adversarial training to the diffusion
model can make sample quality higher. In this work, we added a
min-max objective following:

LD = Eq(Xt−1|Xt)pθ(X̂t−1|Xt)[(Dφ(Xt−1, t)− 1)2

+(Dφ(X̂t−1, t))
2] (3)

Algorithm 1 Pseudo code of sampling process of the acoustic
model.

# prepare the optimized denoising netowork, net()
choose y for y in [0, 1, 2, 3, 4, 5, 6]
XT ∼ N (0, I)
# the shape of XT is same to the log-mel spectrogram of the 4
sec. length audio
# the elements of XT are i.i.d. samples
Xt = XT
for t in (T, ..., 1):
z ∼ N (0, I)

if γ == 1:
εθ = net(Xt, t, y)

else:
εθ = (1-γ) net(Xt, t, ∅) + γ net(Xt, t, y)

Xt−1 = 1√
αt

(Xt − βt√
1−ᾱt

εθ(Xt, t, y)) +
√

1−ᾱt−1

1−ᾱt βtz

Xt = Xt−1

return Xt

LAdv = Epθ(X̂t−1|Xt)[(Dφ(X̂t−1, t)− 1)2], (4)

where Dφ, and X̂t−1 denote the discriminator network, and the es-
timated diffused posterior on the step t by pθ . Finally, the diffusion
model is optimized by minimizing the the total loss:

LG = LDDPM + LAdv. (5)

In this work, we used a little modified BC-ResNet-mod-4 [11]
(Fig. 2) as the descriminator. The discriminator does not aggregate
the feature map into scalar for determination whether the input data
is real or fake; in other words, the output of the discriminator is the
feature map of the input data, and Equation 3 is calculated pixel by
pixel.

3.4. Sampling

Sampling process follows the probability distribution of reverse
process pθ(Xt−1|Xt, y).

pθ(Xt−1|Xt, y) , N (µ̃θ(Xt, t, y), β̃tI)

µ̃θ(Xt, t, y) =
1√
αt

(Xt −
βt√

1− ᾱt
εθ(Xt, t, y))

β̃t =
1− ᾱt−1

1− ᾱt
βt.

(6)

If the classifier-free guidance is applied, εθ(Xt, t, y) is replaced to
(1 − γ)εθ(Xt, t, y = ∅) + γεθ(Xt, t, y), where γ and ∅ denote a
guidance scale and the null ID. The details of sampling procedure
is shown in Algorithm 1.

3.5. Vocoder

After sampling the acoustic feature X0, we decode the feature into
the audible signal using vocoder. The specification of the decoded
signal is 22,050 Hz, and mono channel. We used the pre-trained
HiFiGAN given from the task 73.

3https://github.com/DCASE2023-Task7-Foley-
Sound-Synthesis/dcase2023_task7_baseline
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Table 1: Comparison of the FAD scores to the baseline and the submissions.

System Dog Bark Footstep Gunshot Keyboard Vehicle Rain Sneeze

FAD
score

DCASE Baseline4 [6] 13.411 8.109 7.951 5.230 16.108 13.337 3.770

Submission 1 5.056 5.753 5.886 4.508 20.729 6.399 1.706

Submission 2 4.518 5.745 6.992 4.696 18.623 6.912 1.600

4. EXPERIMENTS

4.1. Audio processing

We used log mel spectrogram for the audio feature. The sampling
rates, window size, hop size, and the number of mel bands were
22,050 kHz, 1024, 256, and 80. The number of FFT points were
same to the window size. Before STFT, we eliminated the zero
paddings, and after extracting the log-mel spectrogram, we ran-
domly cropped the spectrogram into 140 frames for the efficient
training. If the number of frames were less than 140, spectrograms
were zero-padded.

4.2. Training details

We used UNet5 of 32 initial dimensions for the denoising network,
in which the feature map resolutions were reduced to 80×F , 40×
F/2, 20× F/4 and 10× F/8 for each down-block. The diffusion
process followed the linear variance schedule of from 2.5 × 10−4

to 0.05 with the total timestep T = 400. Also, the dimensions of
the temporal positional embeddings, token embeddings, and linear
projections for those embeddings were 128.

The BC-ResNet-Mod-4 [11] serves as the discriminator
(Fig. 2). In details, pooling layers were inserted after all BC-
ResBlocks [12] except the last block, and the sinusoidal time em-
beddings [13] were summed up with the hidden features before the
operation of the BC-ResBlocks. Also, we eliminated the classifier
layer; in other words, the outputs of the last Res-Block is the final
outputs of the discriminator.

We optimized the networks using AdamW [14] optimizers with
β1 = 0.8, β2 = 0.99, learning rates of 0.0001, and weight decays
of 0.0001. For the discriminator, we used a learning rate scheduler
that decayed the learning rate with a 0.999975 factor in every train-
ing step. Also we used mixed precision training. Submission 1 and
Submission 2 were trained 600 k and 650 k steps, respectively, with
64 batch size.

5. RESULTS

To evaluate our systems, we randomly sampled 100 sounds for each
class, and measured Frechet audio distance (FAD) score6 [15]. All
sounds were sampled in 22,050 Hz, mono channel and 4 sec length.
Sounds of dog bark, gunshot, and sneeze were sampled with a guid-
ance scale of 3, and the others were sampled without guidance. As
shown in Table 1, our submissions showed the lower FAD scores
than the DCASE baseline except the moving vehicle sounds. When
the guidances were applied, the FAD scores of dog bark, gunshot,

5https://github.com/lucidrains/denoising-
diffusion-pytorch

6https://github.com/DCASE2023-Task7-Foley-
Sound-Synthesis/dcase2023_task7_eval_fad

and sneeze samples were enhanced but the others were lower. In
the case of the moving motor vehicle sounds, the FAD scores were
higher than the baseline. In our analysis, this is because the sounds
of moving motor vehicles have noisy pattern, and the denoising pro-
cess could not recognize the diffusion noise to the noise for the re-
construction. In other words, the network might confuse the noisy
pattern of the sound to the diffusion noise.
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