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ABSTRACT

This paper introduces FALL-E, Gaudio’s Foley Synthesis
System, which is submitted to the DCASE 2023 Task 7 -
Foley Synthesis Challenge (Track A). The system employs
a cascaded approach comprising low-resolution spectrogram
generation, spectrogram super-resolution, and a vocoder. We
trained every sound-related model from scratch using our
extensive datasets, and we utilized a pre-trained language
model. We conditioned the model with dataset-specific texts,
enabling it to learn sound quality and recording environment
based on the text input. Moreover, we leveraged external lan-
guage models to improve text descriptions of our datasets and
performed prompt engineering for quality, coherence, and di-
versity. We report the objective measure with respect to the
official evaluation set, although our focus is on developing
generally working sound generation models beyond the chal-
lenge.

Index Terms— Generative models, DCASE, sound syn-
thesis

1. INTRODUCTION

Generative AI has seen significant progress in recent years,
particularly in the domains of images and text. However, the
progress in sound generation has been comparatively slower.
To address this gap, we proposed a challenge for foley syn-
thesis, which was later incorporated into an official proposal
to DCASE and accepted [1]. In this report, we introduce
Gaudio’s Foley Synthesis System, which is our submission
to the challenge.

Generative models have advanced rapidly in recent years,
particularly in the domains of images and texts. In the field of
sound generation, however, progress has been comparatively
slower. To address this gap, numerous impressive works have
been introduced including text-to-sound models such as Au-
dioGen [2] and AudioLDM [3]. In addition, several works
can be used as modules of the whole system such as Hifi-
GAN [4], SoundStream, EnCodec [5, 6], latent diffusion [7],
and spectrogram super-resolution [8].

Furthermore, in text-input and text-conditioned genera-
tion, models such as T5 [9], GPT [10, 11], text prompt en-
gineering [12, 13], and diffusion with conditioned generative
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models [14, 15, 2, 3] have been introduced. As the behavior
of large deep learning models is somewhat difficult to ana-
lyze, these works enable us as users to steer the model using
carefully selected text inputs.

In this context, we present a novel approach to foley
synthesis that utilizes a cascaded system composed of low-
resolution spectrogram generation, a super-resolution mod-
ule, and a vocoder. Our system represents our submission to
the DCASE 2023 Task 7 - Foley Synthesis Challenge (Track
A) [16]. While we report objective measures with respect
to the official evaluation set, our ultimate goal is to develop
sound generation models that extend beyond the challenge’s
scope.

In Section 2, we introduce our model architecture, FALL-
E, detailing the function of each module and how they work
in tandem. In Section 3, we provide an in-depth analysis of
our evaluation results, showcasing the effectiveness of our
approach in various settings. Lastly, in Section 4, we sum-
marize our contributions and highlight future directions for
our work. Overall, we believe our system represents a sig-
nificant step forward in foley synthesis and we are excited to
share our findings with the research community.

2. FALL-E

2.1. Architecture

Cascaded systems with intermediate features have been
widely used for sound synthesis applications such as sym-
bolic music generation [17, 18], text-to-speech synthesis
[19, 20, 21], and audio generation [3]. The ease of train-
ing and interpretability make cascaded systems a preferred
approach in the field. Several cascaded systems for speech
and audio generation have used mel-spectrogram as their in-
termediate feature. We adopt this approach to generate fo-
ley sound. Our proposed system, called FALL-E, consists of
three separately-trained models: a Glide-based [15] feature
generation model, a diffusion-based upsampling model, and
a mel-spectrogram inversion model based on the HiFi-GAN
neural vocoder [22].

Feature generation model is based on Glide, a diffusion
generative model for text-to-image generation [15]. To gen-
erate sound signal from the text prompt, we borrow the main
branch of the Glide except the image-related text encoder.
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Dog, small, whining, yelping, barking Feet footsteps on carpet surface Gunshot, gunfire, mechanism, reload

Keyboard sound, keyboard typing, computer. Motorcycle, driving constantly A heavy rainstorm with wind and lightning.

Young adult female sneeze. Blow nose Rain. Thunder. Rain shower with thunder Rain. Thunder. Rain shower with thunder

Figure 1: Selected 1024-bin mel spectrograms, all with the clean prefix, from one of the final versions of our model.
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The architecture of the model includes 5 blocks for each side
of the U-Net shaped network and convolution channels in-
creases 2 times as it goes to the deeper block starting from
192.

Text encoder of the system is a pretrained Flan-T5, an
instruction finetuned-variants of a T5 model which shows
better performance for various applications [23]. We feed
a sequence of text embedding from this model to the Glide-
based feature generation model with omitting the sentence-
level embeddings. To generate category-based audio signals,
predefined text prompts are used.

Upsampling model is another diffusion-based genera-
tive model that synthesizes mel-spectrograms from the gen-
erated features (or low-resolution spectrograms). The overall
architecture of this model is also a U-Net, that is similar to
that of the feature generation model, but the hyperparameters
differ to make it a smaller size. It uses 4 blocks in each side,
and starting channel size is 128.

Mel inversion model converts the generated mel-
spectrogram into waveforms. This model has a similar struc-
ture to HiFi-GAN vocoder, but we add skip connections to
every convolution block to improve phase reconstruction for
general audio signals.

The whole system (including the mel inversion model
and the text encoder) has 642M parameters. The system can
be effectively served with a single GPU.

2.2. Training and Inference Details

Datasets for the training include various sources across
public and private audio datasets, including AudioSet [24],
CLOTHO [25], Sonniss,1 WeSoundEffects,2 ODEON,3 and
FreeToUseSounds.4 To prevent the data imbalances or the
potential risks of model misbehavior, audio samples with
speech or musical contents are filtered out based on their
metadata. After the filtering, we use 3815 hours of audio
signals for training.

Text conditioning can be optimized or engineered to im-
prove the model behavior for both training and inference.
One of our focus was to control the recording condition /
environment of the generated signals so that the model can
learn from crowd-sourced noisy (low SNR level) datasets as
well, while being able to produce high-quality audio. Among
the datasets we used, AudioSet was the only ”noisy” dataset.
We append a special token that indicates noisy dataset to the
text input during training. For the other datasets, we append
clean dataset token. The impact of this additional token will
be discussed later. We also clean the text label (i.e., text nor-
malization) by dropping some stop words and numbers.

1https://sonniss.com/gameaudiogdc
2https://wesoundeffects.com/we-sound-effects-bundle-2020
3https://www.paramountmotion.com/odeon-sound-effects
4https://www.freetousesounds.com/all-in-one-bundle/

Sound class FAD ↓ (ours) FAD ↓ (baseline)
Dog bark 8.685 13.411
Footstep 5.644 8.109
Gun shot 2.633 7.951
Keyboard 3.835 5.230
Moving motor vehicle 6.540 16.108
Rain 5.464 13.337
Sneeze & cough 2.390 3.770

Average 5.027 9.702

Table 1: The FAD results were obtained by evaluating the
FAD scores for 100 generated audio samples in each sound
class.

3. EVALUATION AND ANALYSIS

Table 1 presents the FAD scores of our proposed approach
compared to the baseline approach across all sound classes
using the official evaluation repositories.5 Our approach out-
performs the baseline approach in all classes, with notable
improvements observed in the rain and moving motor vehi-
cle classes. These classes are characterized by steady sounds,
which lack onsets and offsets. Furthermore, the subjective
quality is significantly improved by our model in all classes.
It should be acknowledged that FAD scores may not be in-
dicative of other important aspects of audio quality such as
clarity, high-SNR, and high-frequency components. Also,
as FAD measures similarity between a reference set and a
test set, improvement beyond reference is mis-measured as a
degradation.

Our model was developed to generate high-quality au-
dio suitable for real-world scenarios using environment and
audio quality prefixes. Despite most of the audio samples
in our training dataset exhibiting poor audio quality due to
background noise, babble noise, wind noise, device noise,
and codec distortion, we confirmed our model produces high-
quality audio. As discussed in Section 2.2, we controlled the
audio sample quality by adding a special token as a prefix to
the original text. Given that audio quality cannot be evalu-
ated objectively, we conducted a listening test for the same
text with both clean and noisy prefixes. Depending on the
prefix used, we observed impressive improvements in sound
quality across all sound classes. As illustrated in Figure 2,
we can clearly observe that the use of the clean prefix had
a discernible impact on the audio quality, as indicated by
the mel spectrogram images. This type of model steering
by prompting has been popular in other domains, and to our
best knowledge, our work is the first work that successfully
shows it in audio generation.

Despite the fact that DCASE 2023 Task 7 does not in-
clude generating audio based on natural language text, our

5https://github.com/DCASE2023-Task7-Foley-Sound-Synthesis
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(a) Dog bark with the clean prefix

(b) Dog bark with the noisy prefix

Figure 2: Mel spectrograms of the generated audio samples
using different recording environment prefixes.

model is designed to do so; similar to AudioGen [2] and Au-
dioLDM [3]. However, in our experiments with various text
prompts, we also have observed some shortcomings where
the details depicted by the text do not translate well into the
generated audio. For example, generating audio for a sen-
tence such as “A man wearing sneakers and a woman wear-
ing high heels are walking together in a church” requires the
model to have a complex understanding of both temporal and
frequency sequences. The model needs to distinguish be-
tween the sounds produced by each object, consider factors
such as the similarity in footstep velocity, and account for
the long reverberation of sound in a church. Currently, the
performance of our audio generation model showed some
limitation for complex texts like the example. However, as
text-audio multi-modal representation learning advances and
larger training datasets are used, we expect the audio gener-

ation performance to improve further.

4. CONCLUSION

In this paper, we have presented FALL-E, Gaudio’s fo-
ley synthesis system. FALL-E employs a cascaded ap-
proach with low-resolution spectrogram generation, a super-
resolution module, and a vocoder. Our system was submit-
ted to the DCASE 2023 Task 7 - Foley Synthesis Challenge
(Track A), and we have reported the objective measure with
respect to the official evaluation set. Through our extensive
dataset and language model conditioning, as well as prompt
engineering, we have achieved high-quality, diverse, and co-
herent sound generation results.

There is a vast potential for the development of genera-
tive AI in the audio domain. As technology continues to ad-
vance, new possibilities for sound generation arise, and the
potential applications of this technology are vast. For exam-
ple, in film and game production, foley synthesis could be
used to produce more realistic sound effects, saving time and
resources compared to traditional foley artistry. We believe
that FALL-E, along with other works in the field, will pave
the way for future advancements in generative audio tech-
nology, and we look forward to the continued development
of this exciting area of research.
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