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ABSTRACT 

This technical report describes the foley sound synthesis system 

for DCASE2023 Task7. Here, it aims to creates foley sound, 

which is widely utilized as various sound effects in multimedia 

contents. To accomplish this, it uses sound synthesis technique, 

generating a 4-second audio clip of one of seven classes. Specifi-

cally, we fine-tuned the baseline model such that improves the 

performance. After that, we ensemble the models using Monte 

Carlo Dropout. The performance of the proposed system was 

compared with the baseline using Frechet Audio Distance(FAD), 

which is referred as an audio evaluation metric. As a result, it was 

confirmed that both the single model and the ensemble model out-

perform the existing baseline system. 

Index Terms— foley sound synthesis, Monte Carlo 

Dropout, model ensemble 

1. INTRODUCTION 

Foley sound refers to sound effects generated by events occurring 

in radio or movies. This foley sound is employed to add various 

sound effects in multimedia contents.  The conventional foley 

sound synthesis was manually recorded and mixed by foley artists. 

However, recently, with advancements in generative models, re-

search is being conducted to utilize sound synthesis techniques to 

generate foley sounds [1]. 

DCASE Task7 is to utilize sound synthesis technology to generate 

foley sounds. It consists of seven classes and generates sounds of 

4 seconds in length. 

In this technical report, we propose suitable hyperparameters 

based on the baseline provided by DCASE to perform high-quality 

sound generation. Furthermore, we suggest an ensemble system 

using Monte Carlo Dropout [2]. In other words, we fine-tuned the 

baseline model very sensitively to improve model behavior. More-

over, we utilized the Monte Carlo Dropout technique to facilitate 

ensemble training for models with long training times. 

This technical report is structured as follows. Section 2 describes 

the model structure and training method of the proposed system. 

Section 3 describes the performance comparison of the baseline 

provided by DCASE and our proposed model. Finally, Section 4 

describes the conclusion of this technical report. 

2. PROPOSED METHED 

2.1. Dataset 

The data provided by DCASE consists of a total of 4,850 sounds 

divided into seven classes (DogBark, Footstep, Gunshot, Key-

board, MovingMotorVehicle, Rain, Sneeze/Cough). The dataset 

was collected from UrbanSound8K, FSD50K, and BBC Sound 

Effects1, and seven classes were selected considering urban sound 

taxonomy [3]. All audio files have been converted to mono 16-bit 

format and have a sampling rate of 22,050Hz. In addition, the 

length of each sound is four seconds, and the number of samples  

Figure 1: Overall architecture of PixelSNAIL  
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in each class is different. In this study, a window size of 1024 and 

a hop length of 256 were set to extract 80-dimensional mel-spec-

trograms, respectively. This is similar to the baseline.  

2.2. Model architecture 

The baseline system consists of a total of 3 modules: One of them 

includes PixelSNAIL, which is known as a generative model that 

combines causal convolution and self-attention mechanism to 

generate high-quality distributions [4]-[6]. PixelSNAIL takes the 

class label of the sound to be generated as input and generated a 

discrete time-frequency representation(DTFR). The following 

module is a VQ-VAE  model that performs effective representa-

tion learning through vector quantization [7]. We use a trained 

VQ-VAE to acquire the DTFR generated from a mel-spectrogram 

[6]. In order to reconstruct a time-domain audio signal from the 

log mel-spectrogram, The HiFi-GAN, which is widely known as 

a high-performance neural Vocoder, was utilized [8].  

Figure 1 shows the model structure of PixelSNAIL [6]. Here, The 

token is a vector filled with all zeros in the same shape as the 

DTFR in VQ-VAE. The PixelBlock consists of a combination of 

gated residual block and causal self-attention mechanism. The 

gated residual block regulates the information flow between lay-

ers using a gated activation unit and residual block [6]. It allows 

for controlled communication of information between different 

layers. The causal self-attention is utilized to extract crucial infor-

mation by capturing the relationships and dependencies among 

the elements of the data. In other words, it helps capture important 

dependencies and patterns in the data by considering the causal 

relationships within the sequence [9]. 

The convolutional encoder used in VQ-VAE captures context-re-

lated acoustic information at various scales through a multi-scale 

convolution layer and then converts a discrete T-F representa-

tion(DTFR). The convolutional decoder is responsible for recon-

structing the extracted time-frequency representation into a mel-

spectrogram. The structure of the decoder uses a structure similar 

to that of the encoder, but the only difference is that it does not 

use a multi-scale convolution layer [7]. 

2.3. Training method 

Adam was used as an optimizer for model learning. By setting the 

Cycle Scheduler, the learning rate is increased up to 3e-4, and the 

learning rate is adjusted periodically through the cosine period 

function [10]. 

Moreover, PixelSNAIL used 4 PixelBlocks, and Dropout was set 

to 0.1. In order to an appropriate model for PixelSNAIL, we per-

formed several training with different channel information.  

3. EXPERIMENTS 

In order to demonstrate the effectiveness of our foley sound system, 

the objective evaluation was conducted using Frechet Audio Dis-

tance(FAD), which is widely employed as an audio evaluation 

metric [11]. Note that there was no overlap between the training 

and evaluation data. For each class, we utilized approximately 50 

samples for evaluation. 

Table 1 shows the FAD result for each model. The baseline model 

in Table 1 indicates 256-channel PixelBlock, while the fine-tuned 

model implies 512-channel PixelBlock. To ensemble several mod-

els, we utilized the Monte Carlo Dropout, where N represents the 

number of inferencing iterations. The experimental result indicates 

that our fine-tuned model and ensemble model outperform the 

baseline model in most classes. Among them, the ensemble model 

with 5 inferencing iterations showed the highest performance. 

4. CONCLUSION 

In this technical report, we attempted to fine-tune the baseline 

model for high quality sound synthesis, and ensembled the sys-

tems via Monte Carlo Dropout. The results of the evaluation 

through the validation dataset show that the single model and the 

ensemble model have high performance compared to the baseline 

model. 
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