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ABSTRACT
Foley sound synthesis becomes an important task due to the grow-
ing popularity of multi-media content, which is an industrial use-
case of general audio synthesis. We propose a diffusion-based
model that generates class-conditioned general audio in a classifier-
free guidance manner as a participant of DCASE 2023 challenge
task 7[1]. Our model follows a UNet-like structure while incor-
porating LSTM[2] inside the encoder block. We demonstrate the
FAD(Frechet Audio Distance) scores of generated results for each
7 sound class respectively.

Index Terms— Diffusion, foley sound synthesis, general audio
synthesis, waveform generation, classifier-free guidance

1. INTRODUCTION

The development of deep neural networks has allowed for high-
fidelity audio that mimics everyday sounds(e.g. bird chirping, dog
barking, or rain) to be produced by promising generative models.
This is commonly referred to as general audio synthesis. There has
been an increased interest in audio synthesis using deep generative
models for personalized sound generation, particularly for multime-
dia content. In particular, foley sound synthesis is one of the most
important production tasks in the posterior phase which aims to gen-
erate a sound aligned with the video [1]. The quality of the sound
(e.g. appropriate timber, loudness) matters in real use cases because
the task is part of the production procedure.

To synthesize proper sounds from various conditions, the stud-
ies usually focus on generating audio based on a corresponding
informative local conditioner(e.g. mel-spectrogram or aligned lin-
guistic features), or with a single type of source. Example applica-
tions of this research include text-to-speech [3] and focusing on spe-
cific sound sources like footsteps [4], laughter [5] and drum [6, 7].
A few recent studies propose source-agnostic systems that can syn-
thesize various types of general audio [8, 9, 10]. However, due to the
vast diversity and complexity of general audio, most previous works
struggle to predict all possibilities of sound sources and appearance.

In another approach, some studies have attempted to synthesize
general audio using auto-regressive models [11, 12] and diffusion
models [7, 13]. DAG, which is the state-of-the-art in full-band gen-
eral audio synthesis [13], especially incorporated an autoregressive
module inside the diffusion model to tackle high-quality general au-
dio synthesis.

In this work, we exploit the main idea of DAG and propose a
diffusion-based generative model in the waveform domain, while
leveraging LSTM [2] in the latent space. Our architecture is capa-
ble of obtaining various types of sounds with sound category as a

condition. We demonstrate our approach enables general audio syn-
thesis on a foley sound dataset without potential quality loss and
pretraining. We follow the details given in Foley Sound Synthesis
Challenge Track B (task 7) of DCASE 2023 as one of the partici-
pants [1].

2. RELATED WORKS

2.1. General audio synthesis with Neural Models

To tackle generative audio generation, two branches of approach
have been explored in terms of the model architecture. One is to
exploit autoregressive models: SampleRNN based apporach [11],
PixelSNAIL with VQ-VAE-2 [12]. The non-autoregressive scheme,
especially diffusion models, is the other direction. Score-based
diffusion models have been actively explored recently in vari-
ous sound generation tasks due to their high performance: neural
vocoder [14, 15], conditional drum sound generation [7], general
audio generation [13], text-to-audio generation [9, 10], etc.

Audio generation schemes can also be divided into two in an-
other direction. The model can either predict time-frequency repre-
sentation [11, 12, 9, 8, 10] or raw waveform of the sound [14, 15, 7,
13]. In the case of dealing with time-frequency representation such
as mel-spectrogram, it requires an auxiliary vocoder module to pre-
dict the phase of each frequency component other than frequency
magnitude. This often requires pretraining and brings information
loss depending on its performance [13]. Generating audio waveform
directly, on the other hand, can prevent these potential performance
losses.

Audio generation in latent space is a technique proposed to ease
training by decreasing the dimension of learning space [9, 10]. The
latent space could be rather discrete [12, 9] or continuous [10] as
the depth and dimension are also a hyperparameter. However, this
method can degrade the generation performance due to information
loss while compression [13].

2.2. Diffusion-based models for general audio synthesis

Several previous works attempted to generate a raw waveform of
general audio by diffusion-based model. Two score-based models
for general sound generation were proposed for the first time: Wave-
grad [14] and DiffWave [15] They focus on neural vocoding with
mel-spectrogram conditioning by exploiting diffusion probabilistic
models to convert mel-spectrograms into raw audio waveforms for
speech synthesis. Unfortunately, the two lack the ability to generate
sound from scratch which is crucial in general audio synthesis.
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Figure 1: Model architecture.

CRASH [7] is the first approach to generate a waveform of
categorical sounds. Their objective is to generate 0.5-second audio
waveform of three categories (kick, snare, and cymbals) in a classi-
fier guidance manner. The limitations of this work are the short gen-
eration length and the dependency on the auxiliary classifier model.

DAG [13] is the state-of-the-art general audio synthesis system,
which outperforms both SampleRNN [11] and an approach with
PixelSNAIL and VQ-VAE [12]. The diffusion model is trained on
10 or 15 different sound classes depending on the dataset, with a
length of 4 seconds. To implement classifier-free guidance for class-
conditioned generation, a learnable class embedding is fed through
a FiLM [16] layer with the diffusion time step information. The
notable part is that DAG exploited neither the time-frequency rep-
resentation of audio nor latent space while training.

3. MODEL ARCHITECTURE

Figure 1 shows the model architecture. We follow the idea from
DAG [13] to use a UNet-like structure that includes autoregressive
module in the encoder block. To predict the noises corresponding
to each diffusion step, our proposed conditional UNet model con-
sists of three modules: downsample, middle-sequential, and upsam-
ple modules. Downs and up-sampling modules follow the encoder-
decoder format, compressing the noised waveform into hidden fea-
ture embeddings and vice versa through subsequent layers with re-
sizing factors. Each down/up layer, which refers to the Down/Up
Block in Figure 1, contains 4 sequences of activation function,
FiLM layer, and convolution block with 2 residual connections.
There is one difference between the Down and Up blocks. In the
Down block, the first convolution block is built as a stride convolu-
tion block with compressive stride factors, while in the Up block, it
is built as a transposed convolution block with corresponding fac-
tors. Note that every FiLM layers take sigma embedding and class
embedding as conditions.

Upon conducting experiments in this basic UNet architecture,

we discovered that a lack of global consistency exists in the gen-
erated samples. Although the generated samples successfully cap-
tured localized features for each class, there was a lack of natu-
ral coherence among the sounds. For instance, in the ”Keyboard”
class, because the dataset has both typewriter and computer key-
board sounds, these two distinct sounds are blended within a single
sample highlighting the presence of certain shortcomings. To ad-
dress this issue, we added a bidirectional LSTM [2] as a middle-
sequence module to achieve a broader receptive field and finally
improve the consistency of generated sounds.

For noise scheduling, variance preserving cosine scheduling is
used [7], which can be represented as σ(t) = 1

2
[1−cos(πt)] where

σ2(t)I stands for the variance of a normal distribution which is the
transition kernel of a forward process pt(x(t)|x(0)). We also sam-
ple t in the interval [η, 1] during the training where η = 10−4.

For conditioning elements, we first embed the logarithm with
random Fourier feature embeddings same as [7], followed by a
multi-layer perceptron(MLP), to yield the embeddings g in Figure
1. To obtain class condition embedding c, the class label index is
converted into an embedding matrix L× 512 where L is the size of
class labels and passed to linear projection layers.

4. EXPERIMENTAL DETAILS

4.1. Dataset

We use the provided development data resources only allowed for
Track B. The dataset is composed of approximately 5k foley sound
samples. Samples have a 22050Hz sample rate in mono for 4 sec-
onds. We used about 95% of the dataset to train and 5% to validate
our model.

4.2. Configurations

Through the various experiments with different designs and
configurations, we found the best combinations of hyper-
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Class ID Category FAD
Baseline Ours

0 DogBark 13.411 8.441
1 Footstep 8.109 7.761
2 GunShot 7.951 7.892
3 Keyboard 5.230 5.167
4 MovingMotorVehicle 16.108 16.358
5 Rain 13.337 13.173
6 Sneeze/Cough 3.770 4.418

Total Average 9.702 9.03

Table 1: Evaluation result of given sound category classes. FAD
stands for Frechet Audio Distance.

parameters which has [2, 2, 3, 3, 5, 5, 7] factors, with channel sizes
[64, 128, 128, 256, 256, 512, 512]. Therefore, with 22050Hz wave-
forms, we obtain latent sequences of 512 dimensions at 3.5Hz. The
model is trained for 270 iterations on the provided development
dataset via gradient descent with Adam, 4 sizes of mini-batch, and
a scheduled learning rate from 2× 10−4 to 5× 10−5.

5. RESULTS

For quantitative evaluation, we used the Fréchet audio dis-
tance(FAD) [17] score as follows as the challenge’s criteria. FAD
scores per class are measured from our generated sounds and the
given evaluation data on 100 samples for each. is shown in Table
1. Our model outperforms the given baseline [12] in 5 classes and
shows similar performances in the rest of the 2 classes.

In terms of qualitative evaluation, we found that the timber of
the generated audio is consistent within a single sample, and the
quality is better than the baseline model except for a few classes
(MovingMotorVehicle and Sneeze/Cough).

6. CONCLUSION

In this work, to address the given challenge of foley sound synthesis,
we extended the approach of DAG [13] and proposed a score-based
waveform generative model leveraging the temporal features of au-
dio with additional sequential modeling. Through the experiments,
we find that foley sounds can be roughly divided into event-driven
sounds(e.g. dog bark, sneeze) and environmental sounds(e.g. rain,
moving motor vehicle). In future studies, we will focus on the dif-
ferences between these two types of sounds and study event con-
trollable sound generation.
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